Автолюбителям об электроннике

         

Автомобильный цифровой тахометр.


Этот тахометр предназначен для использования при регулировке холостого хода карбюраторов двигателей внутреннего сгорания. Его можно использовать и для контроля частоты вращения вала автомобильных или лодочных двигателей во время движения. Принцип работы заимствован из статьи А. Бирюкова в журнале «Радио»«Цифровой тахометр» - 1997, №11, с. 54, 55. Для увеличения точности измерения оборотов введен предел измерения 3 секунды. Тахометр имеет три разряда индикации с пределом измерения от 60 мин-1 до 7800 мин-1. Погрешность измерения на пределе 1 секунда равна 30 мин-1, а на пределе 3 секунды – 10 мин-1. Нижний предел ограничен погрешностью измерения, а верхний - количеством прерываний между индикацией. Из-за чего индикация разрядов становится прерывистой. В статье-прототипе указана неверная формула [(2Nx3)/60] для вычисления частоты вращения коленчатого вала. Поскольку за один оборот коленчатого вала двигателя происходит два искрообразования, то мы подсчитываем за одну секунду 2N импульсов. Т.е. в два раза большее количество, чем произошло оборотов (N). Чтобы получить значение оборотов в минуту, необходимо умножить значение оборотов за секунду на 60 (Nsx60=Nm). Так как мы подсчитываем число импульсов не N, а 2N, то умножать нужно уже не на 60, а на 30. А поскольку аппаратно мы отбрасываем разряд единиц, то фактически делим значение оборотов на 10. Из этого следует расчетная формула: Nm=2Nsx3 мин-1. Где Nm – значение оборотов в минуту, 2Ns – число импульсов с прерывателя за одну секунду. Если подсчитывать число импульсов за 3 секунды, то Nm=2Ns мин-1. Таким образом, подсчитанное число импульсов за секунду достаточно умножить на 3 и перекодировать в двоично-десятичное, чтобы получить значение оборотов в минуту без единиц. А на пределе 3-х секунд просто перекодировать полученное значение. Показания индикатора равные 100 будут соответствовать значению 1000 мин-1.

Тахометр реализован на одной микросхеме микроконтроллера  PIC16F84A. Алгоритм программы тахометра представлен на рисунке 1.




После включения питания происходит начальная инициализация всех регистров с последующей индикацией. После инициализации вступает в работу таймер TMR0. Таймер имеет коэффициент деления равный 256, что вместе с предделителем, имеющим коэффициент деления равный 32, и циклом процессора равным 4,  дает прерывания каждую секунду (4х32х256=32768). При замыкании контактов прерывателя с входа RB0 также происходит прерывание. При прерывании сохраняются значения регистров, задействованных на момент прерывания, и определяется происхождение прерывания. Если прерывание с входа RB0, то двоичный 16-ти разрядный счетчик увеличивается на единицу. Таким образом, подсчитывается количество прерываний с входа RB0 между прерываниями от переполнения таймера, то есть за 1 секунду. Каждое прерывание заканчивается восстановлением ранее сохраненных значений регистров, и процессор переключается на работу с индикацией. Если прерывание произошло по переполнению таймера, то определяется состояние переключателя предела измерения и, если переключатель на пределе одной секунды, двоичное значение 16-ти разрядного счетчика умножается на 3 (2Nx3). 16-ти разрядный счетчик обнуляется, готовясь к новому циклу измерения. Полученное двоичное значение перекодируется в трехразрядное двоично-десятичное число и переписывается в регистры индикации. После восстановления значений регистров индикация происходит с новыми данными. То есть индикация обновляется каждую секунду. Если установлен предел измерения равный 3 секундам, то при переполнении таймера значение счетчика секунд увеличивается на единицу. Если значение счетчика секунд еще не равно трем, прерывание завершается без обнуления 16-ти разрядного счетчика. В противном случае, в 16-ти разрядном счетчике накапливается количество прерываний с входа RB0 за три секунды. Это значение перекодируется в двоично-десятичное число и переписывается в регистры индикации. Двоичный счетчик обнуляется и цикл повторяется. В данном случае индикация обновляется каждые три секунды.



Схема тахометра показана на рисунке 2.



Входной сигнал с контактов прерывателя стабилизируется стабилитроном VD1 на уровень ТТЛ и подается на вход RB0. При бесконтактной системе зажигания сигнал снимается с выхода коммутатора, выдающего перепад напряжения 3 В. Этого напряжения достаточно для срабатывания микроконтроллера. Входы RA0-RA2 коммутируют аноды светодиодов, реализуя динамическую индикацию. Вход RA3 нагружен переключателем предела измерения «1s-3s». Внутренние подтягивающие резисторы на входах микроконтроллера программно отключены для исключения влияния на входной сигнал, поэтому возникла необходимость в установке резистора R2. Входы RB1-RB7 использованы для вывода значений сегментов. Поскольку микроконтроллер работает при верхнем питающем напряжении 6 В, то микросхему стабилизатора напряжения КР142ЕН5 можно взять с любой буквой, обеспечивающей это напряжение. Потребляемый тахометром ток около 25 миллиампер, поэтому микросхема стабилизатора напряжения не нуждается в радиаторе. Диод VD2 защищает прибор от переполюсовки. Если тахометр будет использоваться при регулировке карбюраторов, то светодиоды АЛ304Г нежелательно заменять светодиодами с большими размерами цифр.

Топология печатной платы и расположение элементов на ней показаны на рисунке 3.



Печатная плата может быть выполнена на одностороннем фольгированном стеклотекстолите, однако лучше сделать ее из двухстороннего стеклотекстолита. Фольгу со стороны установки элементов необходимо использовать в качестве экрана, раззенковав отверстия установки элементов сверлом большего диаметра. Это улучшит помехозащищенность прибора, особенно если высоковольтные провода двигателя имеют микротрещины. После монтажа элементов выводы кварцевого резонатора ZQ1 и микросхемы стабилизатора DA1 изгибают так, чтобы резонатор и микросхема были параллельны плате.

Печатная плата индикаторов со стороны их установки показана на рисунке 4.



Тонкими линиями обозначены проводники, идущие с обратной стороны платы. При монтаже и пайке выводов с изгибом по краю корпуса необходимо действовать аккуратно и быстро, чтобы не повредить соединение внутри пластмассового корпуса светодиода. Для желающих на плате предусмотрен вывод сегмента запятой во втором разряде, чтобы отделить значение тысяч. Его необходимо подключить через резистор 430-510 Ом на минус 5 В. Тахометр в настройке не нуждается. Только необходимо перед установкой проверить кварцевый резонатор на соответствие его номинальной частоте. В противном случае придется корректировать частоту кварца в готовом приборе параллельным или последовательным подключением к нему корректирующих конденсаторов, что не предусмотрено конструкцией платы.

Проверку работоспособности тахометра можно выполнить при помощи любого низкочастотного импульсного генератора. Зависимость частоты FГц от показаний тахометра N мин-1

следующая: FГц х 3 = N мин-1. И наоборот, чтобы иметь представление о частоте вращения коленчатого вала в Герцах, необходимо показания тахометра разделить на три. Например, если подать на вход тахометра частоту 100 Гц, то показания индикатора должны быть равны 300, что соответствует 3000 мин-1. При показании тахометра равном150 (соответствует 1500 мин-1), частота вращения коленчатого вала в Герцах будет равна 50 Гц.   Для определения частоты вращения двухцилиндровых двигателей, например, автомобилей «Ока» показания тахометра необходимо умножать на два.

Файлы .hex и .asm (52,5 Кб) сгенерированные ассемблером MPLAB можно взять здесь.


«Бортовой компьютер М1.5.4. Версия 1.01»


1. Описание

"Бортовой компьютер М1.5.4" (далее "БК") предназначен для отображения в режиме реального времени параметров движения на маршрутне, значений внутренних переменных и кодов неисправностей ЭБУ, а также управления исполнительными механизмами системы управления двигателем с распределенным впрыском топлива и контроллерами Bosch M1.5.4 и Январь-5 как с датчиком кислорода, так и без него.

"БК" имеет пять режимов работы: режим маршрутного компьютера, режим отображения значения внутренних переменных ЭБУ, режим отображения и сброса кодов неисправностей ЭБУ, режим управления исполнительными механизмами ЭБУ и режим вывода информации о данном приборе. Переключение между режимами осуществляется нажатием кнопки "Режим".

Режим маршрутного компьютера

После включения "БК" автоматически переходит в режим маршрутного компьютера. В режиме маршрутного компьютера накапливаются и отображаются следующие параметры движения:

пройденное расстояние от начала маршрута (в метрах); время нахождения на маршруте (включенное зажигание); время в движении (при скорости движения >= 3 км/час); текущая скорость движения автомобиля (в км/час); средняя скорость движения на маршруте (в км/час). Средняя скорость действительна после пробега не менее 1 км; потраченное на маршруте топливо (в миллилитрах); средний расход топлива на маршруте (в литрах на 100 км). Средний расход действителен после пробега не менее 1 км.

Перебор отображаемых параметров осуществляется кнопками "Влево" и "Вправо".

Для остановки подсчета параметров маршрута (без их обнуления) необходимо однократно нажать кнопку "Выбор". Для возобновления подсчета параметров необходимо повторно нажать кнопку "Выбор". Контроль останова/запуска параметров можно осуществить просматривая "время нахождения на маршруте". При остановленном подсчете счетчик секунд остановлен.

Для начала нового маршрута (обнуления параметров предыдущего маршрута) необходимо нажать и удерживать нажатой в течение не менее 1,5 секунд кнопку "Выбор".




Режим просмотра внутренних переменных ЭБУ.

В режиме отображения значений внутренних переменных "БК" показывает в режиме реального времени одну из следующих переменных:

Идентификатор ПО ЭБУ; Положение дроссельной заслонки (в процентах); Температура охлаждающей жидкости (в градусах); Обороты двигателя (в числе оборотов в минуту); Желаемые обороты холостого хода (в числе оборотов в минуту); Угол опережения зажигания (в градусах); Скорость автомобиля (в километрах в час); Текущее положение регулятора холостого хода (в числе шагов); Желаемое положение регулятора холостого хода (в числе шагов); Коэффициент коррекции времени впрыска; Напряжение на датчике кислорода для двигателя с датчиком кислорода (в вольтах); Коэффициент коррекции СО для двигателя без датчика кислорода; соотношение воздух/топливо для двигателя с датчиком кислорода; Напряжение бортовой сети (в вольтах); Длительность импульса впрыска (в миллисекундах); Цикловый расход топлива (в миллиграммах на такт); Массовый расход воздуха (в килограммах в час); Часовой расход топлива (в литрах в час); Путевой расход топлива (в литрах на 100 километров).
Путевой расход топлива выводится только при движении автомобиля; Признак обнаружения детонации (да/нет); Признак блокировки топливоподачи (да/нет); Признак холостого хода (да/нет); Признак мощностного обогащения (да/нет).

"БК" в режиме просмотра внутренних переменных ЭБУ отслеживает их выход за допустимые пределы, выдавая звуковой сигнал в одном из следующих случаев:

в режиме отображения температуры охлаждающей жидкости при превышении температурой значения 110 градусов по Цельсию. в режиме отображения оборотов двигателя при превышении оборотами значения 5520 оборотов в минуту; в режиме отображения напряжения бортовой сети при понижении напряжения ниже 10 вольт; в режиме отображения напряжения бортовой сети при повышении напряжения выше 15 вольт; в режиме отображения признака обнаружения детонации при обнаружении детонации; в режиме отображения признака блокировки топливоподачи при блокировке подачи топлива; в режиме отображения признака мощностного обогащения при обогащении смеси по мощности.



Перебор отображаемых параметров осуществляется кнопками "Влево" и "Вправо".



Режим просмотра и стирания кодов неисправностей ЭБУ

В режиме отображения кодов неисправностей "БК" в цикле считывает из блока управления коды неисправностей и отображает на дисплее их число. Если кодов неисправностей нет, то доступна только кнопка "Режим", при нажатии на которую происходит выход из режима отображения кодов неисправностей. Если коды неисправностей есть, то для их просмотра необходимо нажать кнопки "Выбор", "Влево" или "Вправо". Пролистывание считанных кодов неисправностей осуществляется кнопками "Влево" и "Вправо". Для выхода из режима отображения кодов неисправностей без их очистки необходимо нажать кнопку "Режим". Для стирания кодов неисправностей необходимо нажать кнопку "Ввод" и удерживать ее не менее 1,5 секунд. В этом случае "БК" сотрет коды неисправностей в ЭБУ и вновь считает их (после стирания должно быть считано 0 неисправностей). Коды неисправностей отображаются по стандарту SAE J2012. Их расшифровка приведена на последней странице данного описания.



Режим управления исполнительными механизмами ЭБУ

В режиме управления исполнительными механизмами доступны следующие исполнительные механизмы и внутренние переменные ЭБУ:

Лампа Check Engine; Реле вентилятора системы охлаждения двигателя; Реле управления бензонасосом; Катушка зажигания 1 (1 и 4 цилиндры); Катушка зажигания 2 (2 и 3 цилиндры); Форсунка 1; Форсунка 2; Форсунка 3; Форсунка 4; Коэффициент коррекции СО для двигателя без датчика кислорода; Обороты холостого хода; Положение регулятора холостого хода.

Пролистывание исполнительных механизмов осуществляется кнопками "Влево" и "Вправо". При этом для каждого механизма отображается его текущее состояние (кроме катушек зажигания и форсунок). Для перехода к управлению текущим исполнительным механизмом необходимо нажать кнопку "Выбор". После этого возможно изменить состояние исполнительного механизма однократным нажатием или нажатием и удержанием кнопок "Влево" и "Вправо". Изменение состояния исполнительного механизма индицируется символом '*' в первой позиции дисплея. Для возврата управления исполнительным механизмом ЭБУ необходимо вновь нажать кнопку "Выбор".





Примечание 1:

При управлении каким- либо исполнительным механизмом со стороны диагностического оборудования ЭБУ лишается возможности управления этим исполнительным механизмом. Поэтому после перехода к управлению исполнительным механизмом (символ '*' в первой позиции дисплея) невозможно переключиться на другой режим, пока управление не будет возвращено ЭБУ повторным нажатием кнопки "Выбор".

Примечание 2:

Реле управления бензонасосом доступно только при включенном зажигании и не работающем двигателе. При нажатии на кнопку "Влево" бензонасос выключается, при нажатии на кнопку "Вправо" бензонасос включается. Если управление бензонасосом невозможно, вместо состояния бензонасоса выводятся прочерки.

Примечание 3:

Катушки зажигания доступны только при включенном зажигании и не работающем двигателе. При нажатии на кнопку "Выбор" на катушку зажигания будет выдано 20 импульсов длительностью 5 мсек с паузой 5 мсек. Работа катушки зажигания индицируется символами '***' и звуковым сигналом.

Примечание 4:

Форсунки доступны только при включенном зажигании и не работающем двигателе. При нажатии на кнопку "Выбор" на форсунку будет выдан импульс длительностью 2 мсек. Работа форсунки индицируется символами '***' и звуковым сигналом.
Для блоков управления с одновременным впрыском доступен только параметр "Форсунка 1". При нажатии на кнопку "Выбор" для параметра "Форсунка 1" импульс будет выдан одновременно на форсунки всех цилиндров.
Для блоков управления с попарно-параллельным впрыском доступны только параметры "Форсунка 1" и "Форсунка 2". При нажатии на кнопку "Выбор" для параметра "Форсунка 1" импульс будет выдан на форсунки 1 и 4 цилиндров. При нажатии на кнопку "Выбор" для параметра "Форсунка 2" импульс будет выдан на форсунки 2 и 3 цилиндров.
Для блоков управления с фазированным впрыском доступны все форсунки.
ВНИМАНИЕ: Для двигателей с одновременным и попарно-параллельным впрыском НЕ РЕКОМЕНДУЕТСЯ более 5 раз подряд включать форсунки, так как свечи будут залиты впрыснутым бензином и последующее включение двигателя будет затруднительно (будет необходимо продуть цилиндры прокручиванием двигателя с полностью открытой дроссельной заслонкой в течение 20-30 секунд).



Примечание 5:

Изменение коэффициента коррекции СО возможно только двигателях без датчика кислорода и прошивках, допускающих отсутствие СО-потенциометра (например M1V13R55, M1V13R59, M1V13R61). При нажатии на кнопку "Влево" коэффициент коррекции СО уменьшается (на 0.003 для однократного нажатия и на 0.019 для удержания кнопки), при нажатии на кнопку "Вправо" коэффициент коррекции СО увеличивается (на 0.003 для однократного нажатия и на 0.019 для удержания кнопки). Максимальному обеднению смеси соответсвует коэффициент коррекции СО -0.25, максимальному обогащению смеси соответствует коэффициент коррекции СО +0.25. Сохранение измененного значения в памяти ЭБУ происходит при нажатии на кнопку "Выбор" и возможно только при отключенном СО-потенциометре (отключение СО-потенциометра рекомендуется специалистами АвтоВАЗа для прошивок, допускающих его отсутствие), так как СО-потенциометр имеет более высокий приоритет, чем диагностическое оборудование.

Примечание 6:

При управлении положением регулятора холостого хода нажатие на кнопку "Влево" уменьшает его текущее положение (на 1 для однократного нажатия и на 5 для удержания кнопки), нажатие на кнопку "Вправо" увеличивает его текущее положение (на 1 для однократного нажатия и на 5 для удержания кнопки). При положении РХХ равном 255 шагов шток регулятора холостого хода полностью вдвинут (воздушный канал открыт, обороты максимальны), при положении РХХ равном 0 шагов шток регулятора холостого хода полностью выдвинут (воздушный канал закрыт, двигатель заглушен).
ВНИМАНИЕ: При установке положения РХХ 0 шагов на снятом с двигателя РХХ возможно выпадание штока регулятора.

Примечание 7:

При управлении оборотами холостого хода нажатие на кнопку "Влево" уменьшает значение желаемых оборотов (на 10 для однократного нажатия и на 50 для удержания кнопки), нажатие на кнопку "Вправо" увеличивает значение желаемых оборотов (на 10 для однократного нажатия и на 50 для удержания кнопки). Заметьте - управление происходит значением желаемых оборотов Х.Х., а на дисплее отражается текущее значение оборотов Х.Х. В связи с этим возможна задержка в установке оборотов (двигателю необходимо некоторое время на то, чтобы желаемые обороты стали текущими).



Режим отображения информации о приборе

Для перехода в режим выдачи информации о "БК" необходимо выключить зажигание, нажать кнопку "Режим" и включить зажигание (удерживая ее нажатой). В этом режиме можно просмотреть информацию о версии прибора и его авторах.

Перебор отображаемой информации осуществляется кнопками "Влево" и "Вправо".

Выход из режима осуществляется нажатием кнопки "Режим".

2. Информация по подключению



Если Ваш автомобиль не оборудован иммобилайзером, то связь информационной линии диагностического интерфейса (K-Line) блока управления и контакта "М" колодки диагностики, к которому подключается контакт 1 разъема X3 "БК", разорвана. Для исправления этой ситуации необходимо поставить перемычку между выводами 9 и 18 колодки для подключения иммобилайзера. Если Вам уже делали диагностику в автосервисе, то, скорее всего, данная перемычка уже установлена.

Подсчет пройденного расстояния и скорости движения осуществляется по сигналам от датчика скорости системы управления двигателем (контакт 3 (SPEED) разъема X3 схемы "БК"). Данный сигнал можно снять с зелено/красного провода жгута системы впрыска, идущего на контакт 9 соединителя контроллера.

Подсчет истраченного топлива осуществляется по сигналу расходу топлива ЭБУ (контакт 1 (FUEL) разъема X3 схемы "БК"). Данный сигнал можно снять с оранжево/голубого провода жгута системы впрыска, идущего на контакт 54 соединителя контроллера.

Питание (контакт 1 (+АКБ) разъема X2 схемы "БК") на "БК" рекомендуется подавать с выключателя зажигания - сине/красный провод жгута системы впрыска, идущий на контакт 27 соединителя контроллера. При этом "БК" будет автоматически включаться при включении зажигания и выключаться при выключении зажигания. В некоторых комплектациях автомобилей присутствует разъем для подключения маршрутного компьютера, в который входят сигналы с датчика скорости, расхода топлива и напряжение питания с замка зажигания. При наличии такого разъема рекомендуется брать эти сигналы с него.



3. Важное замечание



После включения зажигания контроллер Bosch M1.5.4 пытается установить связь с иммобилайзером. Если Ваш автомобиль не оборудован имобилайзером, то сигналы к иммобилайзеру попадут на вход "БК". Если в момент установки связи контроллера двигателя с иммобилайзером "БК" подключен к диагностической линии и работает в режиме просмотра внутренних переменных, кодов неисправностей или управления исполнительными механизмами ЭБУ, то двигатель может заглохнуть. Для исключения этой ситуации не переводите "БК" в эти режимы сразу после включения зажигания.



ВНИМАНИЕ:

В программном обеспечении иммобилайзеров, выпущенных до марта 2000 года имеется ошибка, связанная с возможной рассинхронизацией информации в ЭБУ и иммобилайзере при работе диагностического оборудования, что может привести к замене иммобилайзера и ЭБУ. При проведении диагностики, в этом случае, необходимо перевести иммобилайзер в режим технического обслуживания.

К автомобилям, оборудованным иммобилайзером, все вышесказанное не относится.

4. Описание схемы и рекомендации по выбору элементной базы



Формирователь сигнала "Сброс"

Для надежного запуска микроконтроллера после подачи напряжения питания и блокировки работы микроконтроллера при понижении напряжения питания в схеме "БК" применена микросхема супервизора напряжения питания КР1171СП42 (DA1), удерживающая своем выходе уровень логического нуля при напряжении питания меньшем 4.2В. Задержку перехода выхода в состояние логической единицы после установки напряжения питания выше 4.2В обеспечивает конденсатор C2.

Данная микросхема может быть заменена на функционально аналогичную Mitsumi PST529D (полные функциональный и конструктивный аналог); Dallas Semiconductor DS1233-15 (полный функциональный аналог, другая цоколевка); Analog Devices ADM705, Maxim MAX705 (супервизор питания с Watch Dog).

В крайнем случае данную микросхему можно не ставить вообще. Формировать сигнал сброса будет RC цепочка R1-C2. Желательно при этом увеличить емкость C2 до 1 мкФ, и параллельно резистору R1 поставить диод типа КД510 - КД522 катодом на "+" источника питания. Но при этом будут возможны случаи зависания прибора при провалах питания.





Выбор ЖК индикатора

Для отображения информации служит однострочный 16-ти символьный русифицированный ЖК индикатор со светодиодной подсветкой (DD3). В схеме заложен ЖКИ фирмы Data Vision DV16110 с расширенным температурным диапазоном, хотя включенный по "обычной" схеме (для задействования функций расширенного температурного диапазона необходим двухполярный источник питания).

Данный индикатор может быть заменен аналогичным от других фирм, главное соблюсти следующие требования:

контроллер ЖКИ совместимый с KS0066; русифицированный; 1 строка 16 символов.

Примером могут служить Seico, Hantronic (продает "Аргуссофт"), JA-16101 фирмы JE-AN Electronic (продает "Аргуссофт"), AC161B фирмы Ampire (продает "Гамма") и т.п.



Схема питания "МК"

"БК" питается от бортовой сети автомобиля, в которой возможны значительные броски питания и помехи. Для исключения неблагоприятных факторов предназначен ряд дополнительных элементов.

Для защиты схемы от "переполюсовки" служит диод КД248 (VD6). Данный диод может быть заменен любым аналогичным с прямым током не менее 300 mA, например 1N4001 фирмы DC Components.

Для защиты схемы от бросков по питанию служит специальный автомобильный варистор R19 фирмы S+M (Siemens Matsushita Components) SIOV S10K14AUTO. Данный варистор может быть заменен стабилитроном (катод на "+АКБ", анод на "-АКБ") с напряжением стабилизации 15-20 В типа КС515, КС518.

Для защиты низковольтной части схемы от перегорания в результате "пробоя" стабилизатора (DA2) (такие случаи были отмечены эксплуатацией) служит защитный диод VD7 P6KE6.8A фирмы Motorola. Данный защитный диод может быть заменен на схожие по характеристикам 1.5KE6.8, SA5.0A фирмы Motorola или стабилитрон с напряжением пробоя от 5,6 до 6,8В (например КС456).

Для защиты цепей автомобиля, с которых берется напряжение питания для "БК" от короткого замыкания в "БК" служит самовосстанавливающийся предохранитель FP1 MF-R025 фирмы BOURNS с током пропускания 250 мА.





Схема генерации звука

Для подтверждения нажатия кнопок и смены режима служит схема генерации звука (DD1-2, VT4 и BQ2). Основным элементом схемы является пьезоэлектрический излучатель звука HPM14AX фирмы JL-World. Его особенностью является встроенный генератор на частоту 3500 - 4000 Гц, поэтому для генерации звука на него достаточно подать напряжение питания (12 вольт). Подача напряжения питания на излучатель осуществляется через транзистор VT4. Так как ток, протекающий через излучатель, составляет примерно 40 - 50 мА, то транзистор должен допускать ток коллектора не менее 50 мА. Данный излучатель может быть заменен на HPM14A, HPM24A, HPM24AX и аналогичные с напряжением питания не менее 12В.



Схема сопряжения с датчиками скорости и расхода топлива

Преобразование уровней сигналов от датчиков скорости и расхода топлива в ТТЛ уровни осуществляет схема сопряжения, выполненная на транзисторах VT7 (датчик расхода топлива) и VT8 (датчик скорости). Формирование фронтов принимаемого от ЭБУ сигнала выполняют триггеры Шмитта DD1.5 и DD1.6. Для защиты входа "БК" от возможных выбросов напряжения положительной и отрицательной полярности, превышающих напряжение питания, служат диоды VD4, VD5, V8 и VD9. Для этих целей могут быть использованы любые маломощные импульсные диоды, типа КД510, КД511, КД522.



Схема сопряжения с диагностическим интерфейсом ISO9141 (K-Line)

Преобразование сигналов из ТТЛ уровней в уровни сигналов диагностической линии (K-Line) осуществляет схема сопряжения с диагностической линией, выполненная на транзисторах VT5 (приемный ключ) и VT6 (передающий ключ). Для защиты входа "БК" от возможных выбросов напряжения положительной и отрицательной полярности, превышающих напряжение питания, на диагностической линии служат диоды VD2 и VD3. Для этих целей могут быть использованы любые маломощные импульсные диоды, типа КД510, КД511, КД522. Так как по спецификации ISO9141 уровень сигнала логического нуля может иметь уровень, значительно выше нулевого напряжения, то необходимо обеспечить надежное закрытие транзистора приемного ключа при уровне входного напряжения не менее 3,3 В. Эту задачу выполняет стабилитрон VD1 типа КС133. Формирование фронтов принимаемого от ЭБУ сигнала выполняет триггер Шмитта DD1.3.





Часы реального времени

Для формирования меток времени ( используемых при подсчете временных параметров маршрута), а также хранения параметров маршрута при выключенном питании "БК" служит микросхема DD4 часов реального времени (RTC) с энергонезависимой памятью DS1307. Синхронизация ее работы осуществляется от часового кварцевого резонатора BQ3 с частотой 32,768 кГц. Для сохранения параметров маршрута при выключенном питании служит литиевая батарея BT1 CR2032, рассчитанная на напряжение 3В. Данная батарея может быть заменена на любой другой источник питания с напряжением 3В.



Компиляция управляющей программы

Модули управляющей программы написаны на языках ассемблер и Си для компилятора Keil (Keil Electronik GmbH). Программа писалась и компилировалась в интегрированной среде Keil mVision2 V2.04b, ассемблере A51 v6.00f, компилятор Си C51 v6.00i, линковщик BL51 v4.00d. Файл проекта — mktstr.Uv2

В файле program.zip

находятся исходники модулей управляющей программы, в файле mktstr.zip

- откомпилированная программа в формате Intel HEX, а в файле tuning.zip

- краткие рекомендации по настройке.

Автор проекта: Александр Алехин (E-mail: 2465.g23@g23.relcom.ru)


Индикатор М1.5.4 для автомобиля.


1. Описание

«Индикатор М1.5.4» предназначен для отображения в режиме реального времени значений внутренних переменных и кодов неисправностей системы управления двигателем с распределенным впрыском топлива и контроллером Bosch M1.5.4. «Индикатор М1.5.4» имеет два режима работы: режим отображения значения внутренней переменной, выбранной пользователем и режим отображения кодов неисправностей. После включения «Индикатор М1.5.4» автоматически переходим в режим отображения значений внутренних переменных и показывает значение той переменной, которая отображалась до выключения «Индикатора М1.5.4». «Индикатор М1.5.4» отображает в режиме реального времени одну из следующих переменных:

Положение дроссельной заслонки (в процентах);

Температура охлаждающей жидкости (в градусах);

Обороты двигателя (в числе оборотов в минуту);

Желаемые обороты холостого хода (в числе оборотов в минуту);

Угол опережения зажигания (в градусах);

Скорость автомобиля (в километрах в час);

Текущее положение регулятора холостого хода (в числе шагов);

Желаемое положение регулятора холостого хода (в числе шагов);

Напряжение бортовой сети (в вольтах);

Длительность импульса впрыска (в миллисекундах);

Массовый расход воздуха (в килограммах в час);

Часовой расход топлива (в литрах в час);

Путевой расход топлива (в литрах на 100 километров).
Путевой расход топлива выводится только при движении автомобиля;

Признак обнаружения детонации (да/нет);

Признак блокировки топливоподачи (да/нет);

Признак холостого хода (да/нет);

Признак мощностного обогащения (да/нет).

Перебор отображаемых параметров осуществляется кнопками «Влево» и «Вправо». Для перехода в режим отображения кодов неисправностей необходимо нажать и отпустить кнопку «Ввод». При этом «Индикатор М1.5.4» считает из блока управления коды неисправностей и отобразит на дисплее их число. Если коды неисправностей обнаружены, то их можно пролистать кнопками «Влево» и «Вправо». Выход из режима просмотра кодов неисправностей в режим отображения значений внутренних переменных происходит при повторном нажатии кнопки «Ввод».


2. Информация по подключению

Если Ваш автомобиль не оборудован иммобилайзером, то связь информационной линии диагностического интерфейса (K-Line) блока управления и контакта «М» колодки диагностики, к которому подключается контакт 1 разъема X3 «Индикатора М1.5.4», разорвана. Для исправления этой ситуации необходимо поставить перемычку между выводами 9 и 18 колодки для подключения иммобилайзера. Если Вам уже делали диагностику в автосервисе, то, скорее всего, данная перемычка уже установлена. Питание (+АКБ) на «Индикатор М1.5.4» рекомендуется подавать с контакта 87 главного реле системы впрыска. При этом «Индикатор М1.5.4» будет автоматически включаться при включении зажигания и выключаться при выключении зажигания.

3. Важное замечание

После включения зажигания контроллер Bosch M1.5.4 пытается установить связь с иммобилайзером. Если Ваш автомобиль не оборудован имобилайзером, то сигналы к иммобилайзеру попадут на вход «Индикатора М1.5.4». Если в момент установки связи контроллера двигателя с иммобилайзером «Индикатор М1.5.4» подключен к диагности-ческой линии и работает на передачу, то двигатель может заглохнуть. Для исключения этой ситуации «Индикатор М1.5.4» после включения делает паузу 3 секунды до первой попытки подключиться к контроллеру двигателя. К автомобилям, оборудованным иммобилайзером, все вышесказанное не относится. В файле prog.zip

находятся исходники модулей управляющей программы на языках ASSM и C для компилятора FSI.

Автор проекта: Александр Алехин (E-mail: 2465.g23@g23.relcom.ru)

Прошу всех сделавших данное изделие отозваться — во-первых, я, наверно, буду модернизировать прибор и смогу выслать обновленную программу, во-вторых, хотелось бы услышать мнение пользователей, их замечания и предложения.


Автомобильная противоугонная система


На основе всего двух дешевых интегральных таймеров типа 555(КР1006ВИ1) можно собрать недорогую автомобильную противоугонную систему. Ее принципиальная схема приведена на рисунке.

Интегральный таймер А дает выдержку, необходимую для того, чтобы водитель, садясь в машину, успел выключить противоугонную систему. Благодаря этому исключается необходимость во внешнем выключателе системы. Тиристор предотвращает срабатывание таймера В иначе как от датчиков-выключателей, расположенных в уязвимых точках машины.

Таймер А выполняет двойную функцию — обеспечивает время выдержки (оно примерно равно 1,1 RaCa), достаточное не только для того, чтобы водитель, включив противоугонную систему, успел выйти из машины, но также и для того, чтобы он, сев в машину, успел выключить систему. Благодаря этому времени выдержки исключается необходимость устанавливать вне салона машины специальный выключатель, что всегда неудобно, не говоря уж о том, что злоумышленник всегда может обнаружить этот выключатель, В данном случае тумблер для включения и выключения системы можно спрятать где-нибудь за приборным щитком машины.

Когда система выключается, то спадом выходного импульса таймера А запускается таймер В. Когда же система включена, то тиристор позволяет запустить таймер В не иначе как от срабатывания одного из датчиков — выключателей заземляющего типа, расположенных в уязвимых точках машины.



АВТОМОБИЛЬНАЯ СИГНАЛИЗАЦИЯ


Азанов Марат, г.Уфа

Простая и надежная сигнализация. Из органов управления - всего один выключатель. Датчики проникновения - обычные выключатели, которые при работе со схемой выполняют свое прямое назначение, например, кнопки на дверях. Достаточно одному из них замкнуться на короткое время и схема сработает. Схема выдает себя лишь через 10 сек. За это время хозяин может выключить сигнализацию, а взломщик подумать, что такая отсутствует. В режиме охраны устройство потребляет ток, зависящий от параметров применяемых деталей: в моем случае его замерить не удалось из-за его малой величины. Эта схема разработанна очень давно и собиралась из подручных деталей.


Принцип действия:

Элементы SA2-SAn - датчики проникновения. Диоды VD5-VDn служат для развязки датчиков, если они используются для других целей. В некоторых случаях диоды можно исключить.

Напряжение питания, поданое от замкнувшегося датчика, через R1 C1 потупает на VD1. Цепь R1 C1 создает короткий импульс тока, даже если датчик остался в замкнутом состоянии. Конденсатор C2 не дает сработать сигнализации при включении SA1.

На элементах C4, R4, R5, VT2, K1 собран мультивибратор и выходной ключ. Длительность нахождения K1 во включенном положении подбирается резистором R5, а в выключенном - R4. Общая частота импульсов задается C4. Эта часть схемы требует тщательной настройки. У меня получилась частота 2Гц.

C3, VD3, VD4 - узел, формирующий задержку срабатывания сигнализации при замыкании датчика. Это нужно, чтобы отключить сигнализацию при открывании двери. Длительность задержки задается конденсатором C3. Резистор R3 обеспечивает разряд конденсатора при выключении питания.

Узел, отключающий сигнализацию через некоторое время после срабатывания, не разрабатывался, поскольку ложных замыканий датчиков на дверях, багажнике и капоте автомобиля не бывает.

Детали:

Схема состоит из небольшого количества доступных деталей. VD1 - любой маломощный тринистор, например КУ101. Нужно лишь подобрать C1 (увеличить, если не срабатывает при замыкании датчика), R2 (уменьшить, если не срабатывает, но если можно - увеличить) и С2 (увеличить, если срабатывает при включении питания). Диоды - любые маломощные. Реле K1 - РЭС55А, однако оно может коммутировать нагрузку с током не более 1A. Если применить более мощное реле, то потребуется сильно увеличить емкости конденсаторов C3 и C4 (а, следовательно, и габариты устройства). Поэтому лучше мощное реле подключить к выходу РЭС55А. Транзисторы - также любые, с соответствующей структурой, а VT2 должен выдерживать ток включения реле. SA1 - любой малогабаритный выключатель. Типы конденсаторов C2, C3, C4 зависят от климатических условий, в которых будет эксплуатироваться сигнализация. Для холодной зимы лучше выбрать их из серии К53. Если же используются конденсаторы серии К50, то устройство лучше установить в салоне автомобиля. Однако, экспериментальный образец сигнализации на К50 был установлен под капотом и эксплуатировался больше двух лет (снят в связи с переходом на новую систему сигнализации) в холодных климатических условиях (машина стояла под открытым небом), и ни одного сбоя в работе отмечено небыло.

Включение:
1. Включить SA1 при замкнутом датчике (открытая дверь). В таком положении схема может находиться неограниченно долго.
2. Разомкнуть датчик (закрыть дверь).

Отключение:
1. Открыть дверь (замкнется датчик).
2. В течение 10 сек. выключить SA1.

Печатная плата для устройства не разрабатывалась. Монтаж был выполнен навесным методом на листе жесткого картона, пропитанного лаком. Для корпуса использована готовая металлическая коробка.



АВТОМОБИЛЬНЫЕ СТРОБОСКОПИЧЕСКИЕ ПРИБОРЫ СТБ-1 И "АВТО-ИСКРА"


Нашей промышленностью выпускаются стробоскопические приборы: автомобильный стробоскоп СТБ-1 (рис. 1) и прибор "Авто-искра" (рис. 2), предназначенные для проверки и регулировки начальной установки угла опережения зажигания на автомобилях.

Известно, насколько важна для работы двигателя правильная установка начального угла опережения зажигания, а также исправность центробежного и вакуумного регуляторов угла опережения зажигания. Неправильная установка начального угла опережения зажигания всего на 2-3°, а также неисправности регуляторов опережения приводят к потере мощности двигателя, его перегреву, повышенному расходу горючего и, в конечном счете, к сокращению срока службы двигателя.

Однако проверка и регулировка угла опережения зажигания является весьма тонкой, трудоемкой операцией, которая не всегда доступна даже опытному автолюбителю. Стробоскопические приборы позволяют упростить эту операцию. С их помощью даже малоопытный автолюбитель может в течение 5-10 мин проверить и отрегулировать начальную установку угла опережения зажигания, а также проверить работоспособность центробежного и вакуумного регуляторов опережения.


Puc.1. Внешний вид прибора СТБ-1


Puc.2. Внешний вид прибора АВТО-ИСКРА

Основным элементом стробоскопического прибора является импульсная безынерционная лампа, вспышки которой происходят в момент появления искры в свече первого цилиндра двигателя. Вследствие этого установочные метки, нанесенные на маховике или шкиве коленчатого вала, а также другие детали двигателя, вращающиеся или перемещающиеся синхронно с коленчатым валом, при освещении их стробоскопом кажутся неподвижными. Это позволяет наблюдать сдвиг между моментом зажигания и моментом прохождения поршнем верхней мертвой точки на всех режимах работы двигателя, т. е контролировать правильность установки начального угла зажигания, проверять работоспособность центробежного и вакуумн.ого регуляторов опережения, а также проверять работу клапанов, распределительного вала и других деталей двигателя.


Основные технические данные стробоскопических приборов СТБ-1 и "Авто-искра" приведены в табл. 1. Как видно из табл. 1, автомобильный стробоскоп СТБ-1 по своим техническим данным значительно превосходит прибор "Авто-искра".

Наименование параметра Автомобильный стробоскоп, СТБ-1 Прибор "Авто-искра" Выполняемые функции 1. Проверка и регулировка начальной установки угла опережения зажигания 2. Проверка работоспособности центробежного и вакуумного регуляторов опережения зажигания 3. Питание электробритвы постоянным напряжением 127 В 1. Проверка и регулировка начальной установки угла опережения зажигания 2. Питание электробритвы напряжением 127 В постоянного тока Применяемость (назначение) Для всех типов легковых автомобилей Только для автомобилей ВАЗ Напряжение питания, В От 11 до 14 От 11 до 13 Максимальная частота вращения коленчатого вала двигателя, об/мин 3000 800 Допустимая мощность, потребляемая электробритвой, Вт Не более 11 Не более 7,0 Напряжение питания электробритвы, В От 115 до 140 От 112 до 138 Потребляемый ток, А Не более 1,5 Не более 1,0 Ресурс работы, ч 50 Не оговорен Температура окружающего воздуха, С 25±10 Не оговорена Относительная влажность окружающего воздуха, % 85 при температуре +35° Не оговорена Масса, кг 0,7 0,8 Во-первых, по выполняемым функциям. Он позволяет не только проверять начальную установку угла опережения зажигания, но и контролировать работу центробежного и вакуумного регуляторов опережения зажигания. Это качество стробоскопа СТБ-1 обусловлено его хорошими частотными свойствами, позволяющими работать без уменьшения яркости вспышек с частотой до 3000 об/мин коленчатого вала двигателя. В приборе же "Авто-искра" яркость вспышек начинает уменьшаться уже при 700-800 об/мин.

Во-вторых, применяемость стробоскопа СТБ-1 значительно шире, чем "Авто-искры", что связано с конструкцией прибора. Как видно из рис. 1 и 2, стробоскоп СТБ-1 подключается непосредственно к клеммам аккумулятора с помощью пружинных зажимов Кл1 и К.л2 типа "крокодил", а прибор "Авто-искра" имеет коаксиальный штекер Х4, аналогичный штекеру переносной лампы' автомобилей ВАЗ, в связи с чем он может быть подключен только к этим автомобилям. Габариты ручки прибора "Авто-искра" велики, и его неудобно держать в руке. Кроме того, прибор излучает рассеянный свет, и для того чтобы хорошо видеть метки, его приходится близко подносить к вращающемуся шкиву двигателя. А это не только неудобно, но и небезопасно.



Стробоскоп СТБ- 1 свободен от указанного недостатка. Выполненный в виде пистолета с линзой, дающей хорошую фокусировку луча, он удобен и безопасен в эксплуатации. Более мощный преобразователь напряжения в стробоскопе СТБ-1 обеспечивает возможность пользоваться практически любой коллекторной электробритвой.

Ресурс работы стробоскопа СТБ-1 значительно больше, чем у прибора "Авто-искра", что связано с ресурсом работы примененной в нем стробоскопической лампы (СШ5).

Стробоскоп СТБ-1 подключается к свече первого цилиндра двигателя с помощью специального переходника-разрядника Рр1, обеспечивающего практически не" ограниченное количество подключений. Прибор же "Авто-искра" подключается с помощью тонкого металлического проводника / (см. рис. 2), который обычно отламывается после 10-15 подключений.

Принципиальная схема автомобильного стробоскопа СТБ-1 приведена на рис. 3. Прибор состоит из преобразователя напряжения на транзисторах VI - V2, кремниевого выпрямительного блока V4; ограничивающих резисторов R5 и R6; накопительных конденсаторов С2, СЗ, стробоскопической лампы H1; цепи поджига стробоскопической лампы, состоящей из конденсаторов С4, С5 и разрядника Рр1; защитного диода V3 и тумблера S1 для переключения рода работы "Бритва" или "Стробоскоп".


Puc.3

В режиме "Бритва" стробоскоп работает следующим образом.

После подключения зажимов Х5, Х6 к клеммам аккумуляторной батареи начинает работать преобразователь напряжения, представляющий собой симметричный мультивибратор. Транзисторы преобразователя поочередно отпираются и запираются, подключая то одну, то другую половины обмотки 1 трансформатора Т1 к аккумуляторной батарее. В результате во вторичных обмотках появляется переменное напряжение прямоугольной формы с частотой около 800 Гц. Напряжение с обмотки IIа через контакты переключателя S1 поступает к выпрямительному блоку V4, выпрямляется и поступает на гнезда ХЗ,Х4 электробритвы.

При положении переключателя S1 "Стробоскоп" к выпрямительному блоку V4 поступает суммарное переменное напряжение с обмоток 11a и 11б, которое выпрямляется и через резисторы R5, R6 заряжает накопительные конденсаторы С2, СЗ до напряжения примерно 450В.



В момент искрообразования в первом цилиндре высоковольтный импульс от гнезда распределителя зажигания через разъем Х2 разрядника Рр1 и конденсаторы С4, С5 поступает на, поджигающие электроды стробоскопической лампы H1. .Лампа зажигается, и накопительные конденсаторы С2, СЗ разряжаются через лампу. При этом энергия, накопленная в конденсаторах С2 и СЗ, преобразуется в световую энергию вспышки лампы. После разряда конденсаторов лампа H1 гаснет, и конденсаторы С2 и СЗ снова заряжаются через резисторы R5, R6 до напряжения 450 В. Тем самым заканчивается подго-товка к следующей вспышке.

Конденсатор С1 устраняет выбросы напряжения на коллекторах транзисторов VI, V2 в моменты их переключения.

Диод VЗ защищает транзисторы VI, V2 от выхода из строя при неправильной полярности подключения стробоскопа.

Разрядник Рр1, включенный между распределителем и свечой зажигания, обеспечивает необходимую .для под-жига лампы амплитуду высоковольтного импульса вне зависимости от расстояния между электродами свечи, давления в камере сгорания и других факторов. Благодаря разряднику стробоскоп нормально работает даже при замкнутых накоротко электродах свечи.

Принципиальная схема прибора "Авто-искра" приведена на рис. 4. Он состоит в основном из тех же узлов, что и стробоскоп СТБ-1. Его отличия-преобразователь напряжения выполнен несколько иначе: начальное смещение на базы транзисторов подается с одного делителя напряжения R2R3, подключенного к средней точке базовой обмотки III. Для облегчения запуска преобразователя . резистор R2 зашунтирован электролитическим конденсатором С1.


Puc.4

Трансформатор преобразователя имеет также другие намоточные данные. Ограничивающий резистор R1 включен до выпрямительного моста.

Накопительный конденсатор С2 - электролитический - емкостью 10,0 мкФ, стробоскопическая лампа - ИФК-120.

Применение этой лампы вызвало изменение параметров накопительного конденсатора - напряжение зарядки уменьшено до 250-300 В" а емкость увеличена до 10 мкФ, однако яркость вспышек получилась значительно ниже, .чем у стробоскопа СТБ-1.



По- другому выполнена коммутация рода работы. Постоянная времени зарядки накопительного конденсатора С2 почти в 10 раз больше, чем у СТБ-1, поэтому прибором "Авто-искра" можно пользоваться лишь при малых частотах вращения вала двигателя (до 800 об/мин). При больших частотах конденсатор С2 не успевает заряжаться^ паузах между двумя вспышками, и яркость каждой вспышки уменьшается.

Стробоскоп СТБ-1 (см. рис. 1) выполнен в пластмассовом корпусе в виде пистолета с курком. Курок 1 управляет переключателем S1 (см. рис.3). При нажатии на курок переключатель устанавливается в положение "Стробоскоп". Одновременно тело курка перекрывает гнезда ХЗ, Х4 подключения электробритвы, где в это время напряжение достигает 400-450 В.

Пружинные зажимы "крокодил" (Х5, Х6) имеют гравировку полярности и заключены в разноцветные резиновые чехлы. Корпус переходника-разрядника Рр1 пластмассовый, расстояние между электродами 3 мм, вилка Х2 и гнездо XI выполнены из нержавеющей стали.

Конденсаторы С1, С2, СЗ - МБМ на напряжение 600 В. Конденсаторы С4, CS выполнены в виде тонких латунных трубок, надетых на изоляцию высоковольтного провода ПВС, соединяющего стробоскоп с разрядником.

Трансформатор Т1 намотан на тороидальном сердечнике ОЛ 20х32х8. Обмотки 16 и 1в имеют по 40 витков провода ПЭВ-2 диаметром 0,51; обмотки 1а и 1г- по 8 витков, а обмотка 11б-440 витков провода ПЭВ-2 диаметром 0,19. Обмотка 11а-1160 витков провода ПЭВ-2 диаметром 0,1 мм.

Прибор "Авто-искра" выполнен в прямоугольном корпусе из ударопрочного полистирола (см. рис. 2). На корпусе расположено гнездо X1 для подключения высоковольтного провода ПВС, соединяющего прибор со свечой первого цилиндра двигателя, гнезда Х2, ХЗ для подключения электробритвы и переключатель рода работы В1. Провод питания заканчивается коаксиальным штекером Х4. Для подключения к свече первого цилиндра служит специальный металлический усик 1, закрепленный на конце провода ПВС. Переключатель S1 - ТП1-2. Все обмотки трансформатора Т1 намотаны проводом ПЭВ-2 диаметром 0,2 мм. Обмотка 1 имеет 35+35 витков, III-50 + 50, витков, II-870 витков с отводом от 460 витка. Сердечник ОЛ 20x32x8.



Подключение приборов следует производить при остановленном двигателе. При неправильной полярности подключения зажимов стробоскоп СТБ-1 работать не будет.

Прибор "Авто-искра" можно использовать и на других автомобилях, если сделать специальный переходник к коаксиальному штекеру Х4 питания, или совсем убрать штекер и вместо него к проводам припаять пружинные зажимы "крокодил". Однако при этом следует иметь в виду, что в случае неправильной полярности подключения "Авто-искра" сразу же выйдет из строя. Цепей защиты в приборе нет.

При правильном подключении питания должен быть слышен характерный писк чистого тона (около 500 Гц), являющийся результатом работы преобразователя.

При работе со стробоскопом СТБ-1 слабые вспышки лампы могут наблюдаться и без нажатия на курок, что не является неисправностью прибора. При нажатии на курок яркость вспышек возрастает в несколько раз.

Вибрационные бритвы ("Эра", "Нева" и т. д.) подключать к прибору нельзя, так как это может вывести его из строя.

Время непрерывной работы прибора во избежание выхода из строя не должно превышать 10-15 мин. Следует остерегаться прикосновений к движущимся деталям двигателя, которые в свете стробоскопа кажутся неподвижными.

А. Синельников

(В помощь радиолюбителю, вып.77.)


Автосторож с изменяемым "звуковым рисунком" сигнала тревоги


Электронное охранное устройство работает совместно как с контактными (дверными) датчиками, так и с датчиком качания кузова. Кроме того, в нем предусмотрена возможность изменения характера звучания ("звукового рисунка") сигнала тревоги.

В описываемом автостороже использованы микросхемы структуры КМОП, обеспечивающие высокую экономичность по питанию. Сторож также имеет ряд эксплуатационных удобств, отсутствующих в других подобных устройствах. Переход автосторожа в режим охраны происходит при закрывании двери водителя (а не по истечении некоторого времени), сигналу тревоги присуще характерное звучание. Автосторож имеет светодиодный индикатор режима работы и переключатель режима звучания сигнала. В длительном режиме сигнал звучит до тех пор, пока не будет выключено питание, а в кратковременном — ограниченное время. При повторной попытке открывания дверей или качания автомобиля в кратковременном режиме сигнал звучит в два раза дольше, при третьей попытке — в шесть раз дольше.

Устройство допускает, в определенных пределах, осуществлять задержку срабатывания звукового сигнала при открывании двери водителя. Все временные соотношения определяются параметрами времязадающей цепи одного генератора.

Основные технические характеристики устройства:

Время перехода в режим охраны, с. ..................................................... 18

Время задержки срабатывания сигнализации (при открывании двери водителя или замыкании датчика качания), с............................... 6

Время звучания сигнала:

при первой попытке, с .................................................................... 24

при второй попытке, с .................................................................... 48

при третьей попытке, с ................................................................. 144

Звуковой рисунок.: короткий-длинный-короткий; короткий в два раза меньше длинного. Интервал повторения серий сигналов , с...........7,5

Ток, потребляемый в режиме охраны не более, мА................................. 3


Размеры автосторожа, мм .............................................................. 50x45



Принципиальная схема автосторожа приведена на рис. 1. На рис. 2 показана схема подключения автосторожа к датчикам и элементам электрической схемы автомобиля.



На рис.2 SB1 - выключатель двери водителя (параллельно которому можно подключить датчик качания), SB2 —SBn - выключатели других дверей, капота и крышки багажника, SA1 - тумблер включения питания, SВ2 - переключатель выбора режима работы, EL1 - лампа плафона, HL1 — светодиодный индикатор сторожевого режима, К1 - реле звукового сигнала автомобиля.

При включении питания (как при открытой, так и при закрытой двери водителя) короткий положительный импульс, формируемый дифференцирующей цепочкой С2, R3, устанавливает триггер DD2.1 и счетчик DD4.2 в нулевое состояние. Высокий уровень с инверсного выхода триггера DD2.1 через диод VD2 поступает на вход R триггера DD2.2 и устанавливает его в нулевое состояние. Аналогично высокий уровень с инверсного выхода триггера DD2.2 устанавливает в нулевое состояние счетчик DD4.1. Низкий уровень с прямого выхода триггера DD2.1, запрещает работу тактового генератора, собранного на элементах DD3.2, DD3.3. Светодиод HL1 светится непрерывно, индицируя подачу питания на сторож.

При закрывании двери водителя положительный перепад с выхода элемента DD1.1 поступает на тактовый вход С триггера DD2.1 и переключает его в единичное состояние, поскольку на его входе D уровень лог. "1". Высокий уровень с прямого выхода триггера DD2.1 разрешает работу генератора, свето-диод HL1 начинает мигать, сигнализируя о переходе автосторожа в режим охраны. В этом режиме ток, потребляемый от бортовой сети, составляет около 3 мА и расходуется в основном на включение светодиода HL1.

Если теперь открыть дверь водителя, триггер DD2.2 переключится в единичное состояние и низкий уровень с его инверсного выхода разрешит работу счетчика DD4.1 Сигналы с его выходов 1 и 4 поступают на входы элемента DD1.3 — сумматора по модулю 2. Если сторож не выключить через 6 с, на выходе 8 счетчика DD4.1 появится высокий уровень, которым через элемент DD1.4 откроется элемент DD3.4. Сигнал с выхода сумматора DD1.3 поступает на коммутатор тока, собранный на транзисторах VT2 — VT4 и управляющий включением реле звукового сигнала К1. При срабатывании реле зазвучит тревожный сигнал с определенным "рисунком": короткий-длинный-короткий. Длительность короткого сигнала равна половине длинного. Такие серии сигналов повторяются с интервалом 7,5 с.



Если дверь закрыть, то при разомкнутом выключателе SA2 — кратковременный режим, через 24 с, т.е. по окончании двух серий тревожных сигналов, на выходе 2 счетчика DD4.2 появится высокий уровень. Этот положительный перепад напряжения через диод VD4 поступает на дифференцирующую цепь С5, R5, которой формируется положительный импульс. Этим импульсом триггер DD2.2 переключается в исходное состояние, и автосторож переходит в режим охраны.



Повторная попытка открыть дверь приведет к тому, что через 6 с зазвучит сигнал тревоги, но, поскольку счетчик DD4.2 не установлен в нулевое состояние, высокий уровень на его выходе 2 появится только через 48 с. Длительность сигнала будет в два раза больше (рис. 3). При третьей попытке открыть дверь автомобиля положительный перепад в точке соединения диодов VD3 и VD4 появится только через 144 с и прозвучит 12 серий тревожных сигналов. При последующих попытках — тревожный сигнал будет повторяться то из четырех, то из двенадцати серий.

Когда контакты переключателя SA2 замкнуты (длительный режим), диоды VD3 и VD4 закрыты постоянно и серии сигналов звучат до выключения сторожа.

Если в режиме охраны открыть любую другую дверь (кроме двери водителя), капот или крышку багажника, окажутся замкнутыми контакты одной из кнопок SB2 —SBn. Высокий уровень с выхода инвертора DD3.1 переключит триггер DD2.2 и разрешит работу счетчика DD4.1. Сигнал, сформированный на выходе сумматора DD1.3, пройдет через элемент DD3.4, так как на его второй вход через элемент DD1.4 поступает высокий уровень с выхода инвертора DD3.1. Сигнал тревоги включится практически мгновенно. Если открытую дверь, капот или крышку багажника после этого закрыть, то дальнейшее поведение автосторожа будет таким же, как при открывании и закрывании двери водителя.



Автосторож собран на двухсторонней печатной плате из фольгированного стеклотекстолита размером 50x45 мм. Чертеж платы приведен на рис.4. При монтаже деталей на плату будьте внимательны — некоторые точки необходимо пропаять с обеих ее сторон.



В устройстве использованы резисторы типа МЛТ-0,125, конденсатор СЗ типа КМб, остальные — КМ5. Диоды можно использовать любые кремниевые маломощные, подходящие по габаритам, например из серий КД503, КД509, КД510. КД521, КД522. Транзисторы VT1, VT2 - кремневые маломощные, можно заменить на КТ312. КТ342, КТ3102. транзистор VT3 - на КТ313, КТ326, КТ3107. Вместо КТ814Б подойдет любой транзистор p-n-р структуры средней или большой мощности из серии КТ626, КТ818, КТ816, КТ837. Стабилитрон VD5 — любой на напряжение 18 — 30 В. Вместо него допустимо включить диод средней мощности, например серий Д226, КД!05, подключив его параллельно обмотке реле звукового сигнала К1.



Собранный из исправных деталей автосторож настройки не требует. Временные интервалы сигнала треноги можно корректировать путем изменения сопротивления резистора R4. Выключатель SA1 должен быть установлен в потайном месте салона автомобиля, а светоднод HL1 — перед лобовым стеклом так, чтобы световые сигналы были видны снаружи. Маятниковый датчик качания кузова автомобиля можно подключить параллельно контактам SB1, однако в момент закрывания двери водителя из-за вибрации кузова может преждевременно зазвучать тревожный сигнал. Чтобы исключить это явление, автосторож следует дополнить цепью временной задержки триггера ГШ2.2 (рис.5). На печатной плате предусмотрена возможность установки этих дополнительных элементов. При отсутствии датчика качания вместо резистора R11 и конденсатора С6 устанавливают перемычки. При указанных номиналах временная задержка перехода автосторожа в режим охраны после закрывания двери водителя равна примерно 18с, что вполне достаточно для успокоения датчика.



Рассмотрим два варианта построения простого выносного датчика качания. На рис.6 и рис.7 приведены варианты конструкции этих датчиков, отличающихся друг от друга только расположением контактов. Первый датчик имеет неподвижный контакт, который выполнен в виде конуса, а у второго этот же контакт ~ подвижный.

Рассмотрим конструкцию датчиков. В датчике подвижный контакт укреплен ни основании 6, представляющем собой изоляционный материал (гетинакс, кусок фанеры). К основанию лвумя шурупами прикреплена пружина 5. Жесткость пружины подбирается такой, чтобы в спокойном состоянии укрепленный на ней металлический шарик 4 (рис.6) или металлическая воронка 3 (рис.7) не отклонялись в сторону под действием своей массы.



При наклоне основания 6 приблизительно на 5о-10° шарик или металлический конус под дейстпием своей массы должны заваливаться на бок и касаться второго неподвижного контакта 1. Чувствительность датчика в небольших пределах можно регулировать изменением расстояния между подвижным и неподвижным контактами путем, например, перемещения стержня по вертикали в резьбовом соединении 2 вращением ручки 1. При вращении ручки в одну сторону расстояние между контактами увеличивается, в другую - уменьшается. Соответственно изменяется и чувствительность датчика к срабатыванию. Подбирая чувствительность датчика таким образом, нетрудно добиться того, чтобы он срабатывал при вполне определенном заданном угле наклона основания 6.

Кронштейн 8 может быть выполнен из любого металла. В верхней его части делается резьбовое отверстие 2, например, под болт 1 диаметром Мб. В основании датчика находится плоский магнит 7, что позволяет без большого труда разместить датчик на горизонтальной поверхности кузова автомобиля, например на бензобаке.

При правильно подобранных жесткости пружины и зазора между контактами даже небольшое покачивание автомобиля приводит к срабатыванию датчика. Однако стремится к предельно большой чувствительности датчика не следует, т.к. даже при небольшом ветре он будет срабатывать и беспокоить окружающих.

#bn { DISPLAY: block } #bt { DISPLAY: block }


БЛОК ЭЛЕКТРОННОГО ЗАЖИГАНИЯ


Автомобильные системы зажигания сейчас в основном построены на тиристорах [1], тем не менее, транзисторные системы не потеряли своей актуальности [2, З]. В последнее время выпускается много мощных, в том числе составных, транзисторов с характеристиками, позволяющими использовать их для автомобильных систем зажигания.

Предлагаемая схема автомобильного электронного блока зажигания разработана и испытана автором в автомобиле "Жигули 2108" и др., в которых применяются транзисторные коммутаторы (3620-3734) с бесконтактным датчиком Холла (53.013706).

Отличием данной конструкции от штатной [2] является то, что для формирования импульсов прерывания используется микросхема К561ЛА8, включенная по схеме триггера Шмитта.

Технические характеристики практически не отличаются от штатного блока зажигания, но с применением триггера Шмитта импульсы прерывания формируются с более крутым задним фронтом, что позволяет практически мгновенно отключать источник тока от катушки зажигания, тем самым повышая высокое напряжение на ее вторичной обмотке.

Применение конденсатора С2 обеспечивает отключение катушки зажигания от источника тока при остановке двигателя автомобиля, тем самым предотвращая бесполезный нагрев катушки.


Схема блока электронного зажигания, изображенная на рис.1, содержит:
- схему формирования импульсов с регулируемой скважностью на микросхеме DD1. собранную по схеме триггера Шмитта;
- мощный ключ на транзисторах VT1 и VT3 с активным ограничителем тока на транзисторе VT2,делителем напряжения на резисторах R8, R9 и токоизмерительным резистором R10;
- стабилизатор напряжения для питания микросхемы DD1 на стабилитроне VD4, конденсаторе СЗ и резисторе R3;
- схему защиты от превышения импульсного напряжения в бортовой сети на стабилитроне VD6, конденсаторе С4 и резисторе R11;
- схему защиты блока от неверного присоединения аккумуляторной батареи на диоде VD7;
- схему защиты транзистора VT3 от импульсных перегрузок при работе катушки зажигания на диоде VD5. резисторах R12, R13.


Работает схема следующим образом. При включении зажигания напряжение от аккумуляторной батареи подается на схему через диод VD7 и резистор R 11. На катушку зажигания напряжение в начальный момент не поступает, так как стартер не вращает вал двигателя, и на входе микросхемы DD1.2 отсутствуют импульсы. На выходе DD1 присутствует напряжение низкого уровня, которое удерживает транзистор VT1 в закрытом состоянии, поэтому закрыт и транзистор VT3.

Когда стартер поворачивает вал двигателя, на выходе датчика возникают импульсы, поступающие через С2 на вход элемента DD1.1. Последний переключается, и на выходе DD1.2 появляется импульс, который открывает транзисторы VT1 и VT3. Через катушку зажигания проходит ток, и в магнитном поле катушки накапливается электрическая энергия. В следующий момент, когда с выхода датчика исчезает импульс положительной полярности, триггер Шмитта резко переключается в обратное состояние, на выходе элемента DD1.2 появляется низкий уровень, поступающий на базу транзистора VT1. Транзисторы VT1 и VT3 быстро закрываются, и ток, проходящий через катушку зажигания, также быстро исчезает. При этом в первичной обмотке катушки индуцируется ЭДС самоиндукции напряжением 400 В, а во вторичной обмотке катушки зажигания возникает импульс высокого напряжения — 23000...25000 В.

В мощном ключе на транзисторах VT1 и VT3 применена схема активного ограничения тока в катушке зажигания, которая защищает транзистор VT3 от перегрузки и стабилизирует величину тока"разрыва"при колебаниях питающего напряжения бортовой сети автомобиля, тем самым обеспечивая неизменность выходных характеристик системы зажигания [З].

При отпирании транзистора VT1 выходной транзистор VT3 насыщается, обеспечивая низкую величину остаточного напряжения на выходе блока электронного зажигания. Пока ток, протекающий через выходной транзистор VT3 и токоизме-рительный резистор R10, включенный в его эмиттерную цепь, ниже допустимого уровня ограничения, транзистор VT2 заперт.

При достижении выходным током предельного уровня,транзистор VT2 начинает открываться, и потенциал на его коллекторе понижается, что приводит к уменьшению величины тока управления. Транзистор VT3 при этом выходит из режима насыщения в активный режим, напряжение на выходе возрастает до уровня, при котором поддерживается заданный режим тока ограничения. В случае превышения импульсного напряжения в катушке зажигания, оно через делитель R12-R13 подается на стабилитрон VD5, который, открываясь, запирает транзистор VT3. Цепочка C5-R14, включенная параллельно выходному транзистору,является элементом колебательного контура ударного возбуждения,т.е. определяет величину и скорость нарастания вторичного напряжения, развиваемого системой зажигания. Резистор R14 ограничивает емкостный ток через транзистор VT3 в момент отпирания последнего, если конденсатор С5 разряжен. Конструктивно блок электронного зажигания выполнен на печатной плате (рис.2) из одностороннего фольгиро-ванного стеклотекстолита размером 95х75 мм, на которой смонтированы элементы схемы. Плата устанавливается в штатный корпус от коммутатора 3620-3734.



В электронном блоке зажигания использована микросхема К561ЛА8 и резисторы МЛТ. Резистор R10 — типа С5-16 мощностью не менее 1 Вт. Конденсаторы — К73-11 на напряжение не менее 63 В. Диоды VD2, VD3 — КД521А или любые кремниевые маломощные. Стабилитрон VD1 — на напряжение стабилизации 8 В, типа Д814А или КС182А. Стабилитрон VD4 — на напряжение стабилизации 9 В, типа Д814Б или КС191А. Стабилитрон VD5 — КС518А или КС508Г. Диод VD7 — типа КД209А, можно заменить диодом КД226Г. Транзисторы VT1, VT2 — КТ972А; VT3 — КТ898А или КТ890А (КТ8109А). VT3 устанавливается на штатный радиатор из алюминиевой пластины толщиной 4 мм, изолированный от корпуса двойной слюдяной прокладкой с термопроводной пастой.

Для налаживания блока применяется звуковой генератор с частотой от 30 до 400 Гц, имитирующий работу датчика прерывателя. Для получения выходного сигнала напряжением 7...9 В, в случае необходимости, к нему нужно изготовить усилитель мощности на транзисторе КТ815 [4]. Для просмотра импульсов годится любой осциллограф, лучше двухлучевой. Кроме того, необходим блок питания с регулировкой напряжения от 8 до 18 В с током не менее 10 А.

На момент настройки схемы можно обойтись без катушки зажигания, нагрузив коллектор транзистора VT3 на дроссель с магнитопроводом из пластин электротехнической стали индуктивностью 3,8 мГн, сопротивлением 0,5 Ом. Для этого можно использовать унифицированный низкочастотный дроссель типа Д 179-0,01-6,3. Генератор-имитатор датчика импульсов подключают на вход схемы и наблюдают на осциллографе форму и амплитуду выходных импульсов.

Изменением сопротивлений в цепях VD2-R4 и VD3-R5 можно регулировать скважность импульсов, что позволяет регулировать время замыкания и размыкания катушки зажигания.

Для установки необходимого тока ограничения осциллограф подключают к эмиттеру транзистора VT2. При этом в эмиттерную цепь транзистора VT2 необходимо временно подключить резистор сопротивлением 0,1 Ом. Изменяя напряжение на блоке питания, наблюдают появление сигнала на эмиттере. Регулировка уровня ограничения тока производится резисторами R12 и R13. После предварительной настройки схему устанавливают в автомобиле в соответствии со схемой подключения [2] и производят ее окончательную настройку.

Литература:
1. Ломакин Л. Электроника за рулем. — Радио, 1996, N8, С.58,
2. Старков В. Транзисторные системы зажигания — Радио, 1991, N9. С.26-29.
3. Бела Буна. Электроника на автомобиле. — М.: Транспорт,1979.
4. Автомобили "Жигули 2108" и их модификации. Устройство и ремонт. — М.: Транспорт,1987.
5. Ютт В.Е. Электрооборудование автомобилей: Учебник. — М.: Транспорт,1989, 175с.
6. Сидорчук В. Электронный октан-корректор. — Радио, 1991, N11, С.26.

Г.СКОБЕЛЕВ, 640000, г.Курган, а/я 2881.


БОРТОВАЯ СИСТЕМА КОНТРОЛЯ С РЕЧЕВЫМ ВЫВОДОМ ИНФОРМАЦИИ


С.Суковmailto:sfs@fcita.donetsk.ua

Современные автомобили оснащены большим количеством информационно-указательных приборов и сигнальных ламп, предназначенных для контроля работоспособности их основных систем. Однако получаемая с их помощью визуальная информация, с одной стороны, требует отвлечения внимания водителя от контроля дорожной ситуации, а с другой - не достаточно удобна и не всегда может быть вовремя замечена. Эта проблема особенно актуальна для автолюбителей с небольшим водительским стажем, а последствия ее могут быть весьма серьезны. Например не вовремя замеченные показания указателя температуры двигателя о перегреве могут привести к выходу его из строя и, как следствие, к большим финансовым затратам. Не менее неприятными могут оказаться и незамеченные отказы других узлов автомобиля, таких как тормозная и смазочная системы, генератор, задние сигнальные фонари и т.д.

Предлагаемая вниманию читателей "говорящая" бортовая система контроля (БСК) предназначена для использования в отечественных и импортных автомобилях и выдает информацию об обнаруженных неисправностях в речевой форме. Сообщения выдаются мужским или женским голосом (в зависимости от используемой программы и прошивки "речевого" ПЗУ), а качество речи соответствует "телефонному" по классификации Windows Sound System. Перечень сообщений, выдаваемых системой, приведен в таблице.

N Условие выдачи сообщения Фраза сигнализации Кол-во п/п сообщений

1 Температура двигателя Перегрев двигателя 2 более 98 С

2 Пониженный уровень тормоз- Отказ тормозной системы 2 ной жидкости (срабатывание датчика разгерметизации тормозной системы)

3 Напряжение в бортовой сети Нет зарядки аккумулятора 2 меньше 11 В

4 Напряжение в бортовой сети Отказ регулятора напряже- 2 больше 15 В ния

5 Низкое давление масла при Аварийное давление масла 2 частоте вращения коленва- ла более 900 об/мин

6 Не полностью открыта воз- Закрыта воздушная заслон- 1 душная заслонка карбюра- ка тора (включен "подсос") при температуре двигателя более 80 С


7 Обрыв цепи ламп Отказ сигнала торможения 2 стоп-сигнала

8 Обрыв цепи ламп Отказ габаритного сигнала 2 задних габаритных фонарей

9 Обрыв цепи ламп Отказ сигнала заднего хода 2 фонарей заднего хода

10 После включения зажигания Счастливого пути 1 все контролируемые системы в норме

Несколько экземпляров данного устройства более года эксплуатировалось на легковых автомобилях различных марок и показало высокую надежность и эффективность.


Puc.1

Устройство (рис.1) реализовано на базе однокристальной микроЭВМ КР1816ВЕ35. Микросхема DD6 выполняет функции формирователя шины адреса, а DD7 - внешней памяти программ. Порт P1 ОМЭВМ DD10 используется для формирования старших адресов "речевого" ПЗУ DD11, в котором содержится оцифрованная и определенным образом сжатая речевая информация. Младшие разряды порта P2 ОМЭВМ используются для адресации ПЗУ программ DD7, а старшие разряды этого порта совместно с ИС DD13 и DD8.4 - для выбора внешних устройств: ПЗУ речи DD11, коммутатора входных данных DD3-DD5 и регистра звукового тракта DD12. На логических элементах DD8.1, DD8.2, DD9.1, DD9.4 выполнен генератор импульсов частотой 7 кГц, использующихся в качестве тактовых при выводе речи.

Интерфейсная часть схемы, обеспечивающая сопряжение коммутатора данных DD3-DD5 с системой электрооборудования автомобиля и приведение входных сигналов к ТТЛ-уровням, реализована на ИС DD1, DD2 и DA2. При этом операционные усилители DA2.1, DA2.2 осуществляют сравнение сигнала датчика температуры с уставками, задаваемыми резисторами R7 и R11, на микросхеме DD2 реализован формирователь импульсов нормированной длительности из входных импульсов зажигания, а элементы ИС DD1 работают как преобразователи уровня и пороговые элементы.

Как видно из представленной на рис.1 схемы, из 18 входных линий коммутатора данных DD3-DD5 задействовано для ввода информации только 10. Остальные входы частично используются как служебные при настройке устройства, а частично - как резерв для подключения дополнительных датчиков и развития системы.



Звуковой тракт устройства включает в себя цифро- аналоговый преобразователь на ИС DA3 и DA4, фильтр Баттерворта 4 порядка с частотой среза 3 кГц на операционных усилителях DA5.1, DA5.2 и усилитель низкой частоты DA6.

Источник питания БСК выполнен на интегральном стабилизаторе DA1, формирующем напряжение +5 В, и транзисторах VT1-VT3, которые совместно с элементами VD2-VD4 и С5, С6 обеспечивают инверсию полярности и стабилизацию напряжения питания -5 В. В качестве управляющих импульсов инвертора полярности используется сигнал CLK, вырабатываемый тактовым генератором вывода речи.

Настройка устройства осуществляется с помощью подстроечных резисторов:
R7 - настройка на температуру, при которой выдается фраза "Закрыта воздушная заслонка";
R11 - настройка на температуру для выдачи фразы "Перегрев двигателя";
R21 - настройка на напряжение срабатывания для фразы "Нет зарядки аккумулятора";
R22 - настройка на напряжение срабатывания для фразы "Отказ регулятора напряжения";
R24 - регулировка тактовой частоты выдачи речи;
R36 - регулировка уровня громкости.

На рис.2 приведена принципиальная схема одного из трех идентичных каналов блока контроля работоспособности ламп в задних фонарях. Учитывая параллельность соединения одноименных ламп, для независимости контроля каждой из них схема электрооборудования автомобиля дорабатывается путем введения диодной развязки ламп с помощью VD1, VD3. После такой доработки узел обеспечивает контроль работоспособности обеих ламп как во включенном, так и в выключенном состоянии.


Puc.2

До тех пор, пока напряжение на лампы не подано, элементы R1, VD2, LD1 и R3, VD4, LD2 совместно с нитями накала соответствующих ламп образуют делители напряжения. Так как сопротивления нитей ламп очень малы, падение напряжения на них незначительно, транзисторы VT1 и VT2 закрыты и на выходе узла присутствует логическая "1". В случае обрыва цепи любой из ламп соответствующий транзистор открывается и на выходе узла формируется логический "0" - признак отказа лампы. Во включенном состоянии ламп, т.е. когда на них подается напряжение от бортовой сети, контроль их работоспособности осуществляется с помощью датчиков тока. Датчики представляют собой герконы KD с намотанными на них обмотками LD. Последние включены последовательно с контролируемыми лампами, поэтому при протекании по ним тока контакты герконов замыкаются, шунтируя база-эмиттерные переходы транзисторов. Транзисторы VT1, VT2 находятся в закрытом состоянии, а выход узла - в состоянии логической "1". При отказе любой из ламп ток по обмотке соответствующего датчика не протекает, контакты геркона размыкаются, открывается соответствующий транзистор и состояние на выходе узла меняется на противоположное.



БСК подключается к системе электрооборудования автомобиля в соответствии со схемой, приведенной на рис.3, и работает следующим образом.


Puc.3

После подачи на устройство напряжения питания при включении зажигания, начинается сканирование задействованных в системе штатных датчиков автомобиля и выходов блока контроля работоспособности ламп. Если в течение 5 секунд ни на одной из входных линий БСК не будет зафиксирован признак отказа, сканирование датчиков прерывается и устройство переходит к выдаче фразы "Счастливого пути", выбирая необходимую оцифрованную информацию из ПЗУ речи, после чего опять возвращается к опросу датчиков. В случае возникновения в процессе последующей эксплуатации автомобиля на одной или нескольких входных линиях БСК признака отказа, устройство аналогичным образом выдаст соответствующую фразу сигнализации. При этом для обеспечения надежности работы устройства и защиты от ложных срабатываний, активный уровень на входных линиях БСК воспринимается как признак отказа только в том случае, если он присутствует на линии непрерывно в течение 3 секунд.

В большинстве случаев программой предусмотрен двойной повтор фразы для повышения надежности ее восприятия. Кроме того, с этой же целью каждую фразу предваряет тональный звуковой сигнал, привлекающий внимание водителя и готовящий его к приему информации.

Конструктивно устройство выполнено в виде двух блоков: блока БСК, размещаемого в салоне автомобиля под приборной панелью, и блока контроля работоспособности ламп, устанавливаемого в районе задних фонарей.

С вопросами по данной публикации можете обратиться к автору статьи С.Сукову - sfs@fcita.donetsk.ua

(РЛ 1998, N6)


ДАТЧИКИ ВЛАЖНОСТИ ДЛЯ СТЕКЛООЧИСТИТЕЛЕЙ


При попадании водяных капель на датчики влажности Е1 и Е2 изменяется сопротивление между пластинками, что приводит к запуску генератора, собранного на микросхеме DD1. Сигнал с генератора поступает на транзисторный ключ, который управляет электродвигателем стеклоочистителей. Частота движения стеклоочистителей зависит от влажности лобового стекла автомобиля, чем интенсивнее дождь, тем меньше сопротивление между датчиками и больше частота импульсов, вырабатываемых генератором.


Датчиком влажности служат две алюминиевые пластины из фольги, наклеенные на стекло таким образом, чтобы стеклоочистители вытирали между ними воду. Резисторами R1 и R2 можно регулировать интенсивность работы стеклоочистителей. Размеры и расстояние между пластинами подбираются экспериментально.

А.ХМЕЛЕВСКИЙ



Газоразрядное освещение - от аккумулятора


   Во время автопутешествий, жизни в палатках хорошо зарекомендовали себя преобразователи для газоразрядных ламп. Батарейное освещение - вещь очень дорогая. Гораздо дешевле использовать в качестве источника энергии автомобильный аккумулятор. Лампы накаливания в 10 или 15 Вт практически достаточно для освещения внутри палатки. В то же время, при одной и той же энергии световой поток от газоразрядной лампы существенно больше, поскольку ее КПД гораздо выше, чем у традиционной лампы накаливания. Кроме того, дополнительное преимущество газоразрядной лампы состоит в том, что источник света - не точечный, так что освещение будет более равномерным.

   Привожу описание двух преобразователей для газоразрядных ламп; для обоих необходимо напряжение питания 12В. Первый из них используется для ламп мощностью 6 Вт, а второй - для ламп 18 Вт.

Рис. 1. Принципиальная схема преобразователя для газоразрядных ламп 6 Вт

   Преобразователь для газоразрядных ламп 6 Вт. Его принципиальная схема приведена на рис.1. Конденсатор С1 заряжается через резисторы Р1 и R1. Когда напряжение на конденсаторе достигает около 0,6 В, открывается транзистор Т1. Появившийся ток коллектора создает с помощью обмотки п1 магнитное поле. Под действием изменений магнитного потока в обмотке п2 индуцируется напряжение, которое добавляется к напряжению, имеющемуся на конденсаторе С1. Течение процесса обеспечивается надлежащим подключением начала и конца обмотки n2. С увеличением тока базы транзистор Т1 оказывается в состоянии насыщения; увеличение тока коллектора прекращается. Вместе с этим прекращается рост магнитного потока в сердечнике трансформатора. Раз магнитный поток перестает изменяться, индуцированное напряжение не возникает. Ток базы транзистора Т1 резко падает. Вследствие этого уменьшается и ток коллектора. Как только магнитный поток начинает уменьшаться, индуцируемое на концах обмотки обратной связи напряжение меняет полярность,поэтому оно вычитается из напряжения на конденсаторе С1. Транзистор Т1 закрывается. Вследствие наличия положительной обратной связи, процессы открывания и закрывания происходят очень быстро. Описанный процесс повторяется периодически. Частота колебаний зависит от сопротивления потенциометра Р1. Чем меньше сопротивление, тем больше ток зарядки и, следовательно, тем выше частота колебаний. Величина сопротивления R2 определяет ток базы транзистора Т1. С помощью этого сопротивления коэффициент полезного действия блокинг-генератора можно настроить на оптимальную величину. Форма сигнала на коллекторе транзистора схематически показана на рис.2.


   Вторым, гораздо более надежным, является способ "горячего зажигания". В этом случае разогреваются нити накала, находящиеся на концах газоразрядной лампы; затем, в момент их выключения, на лампу подается импульс напряжения, который ее и зажигает. Время задержки обеспечивается специальной лампой тлеющего разряда (стартером), который применяется при использовании ламп в электросети. Недостаток этого метода в том, что срок службы лампы уменьшается. Другим существенным моментом является то, что длительный накал нитей лампы значительно уменьшает КПД преобразователя.

   Все эти моменты учитываются в транзисторном блоке зажигания. В момент включения незаряженный электролитический конденсатор СЗ образует своего рода короткое замыкание. Этот конденсатор начинает заряжаться через резистор R4 и переход база-эмиттер транзистора Т2. Возникший под влиянием тока базы ток коллектора приводит к срабатыванию реле J. Контакты реле замыкают электроды газоразрядной лампы, и они разогреваются. Как только конденсатор СЗ заряжается, ток базы транзистора Т2 исчезает. Реле размыкается; возникший на обмотке пЗ скачок напряжения зажигает лампу. Резистор R3 способствует полному закрыванию транзистора Т2. Диод D1 защищает транзистор Т2 от индуктивных скачков напряжения, возникающих в момент выключения реле.



Рис. 4. Печатная плата преобразователя для газоразрядных ламп 6 Вт

   Данный преобразователь имеет защиту от подключения аккумулятора с неправильной полярностью. При перемене полярности открывается диод D3 и перегорает предохранитель Bi.



Рис. 5. Схема размещения деталей преобразователя для газоразрядных ламп 6 Вт

   Печатная плата преобразователя для газоразрядных ламп 6 Вт приведена на рис.4; схема размещения деталей на ней показана на рис.5. Те дорожки, по которым проходит большой ток, должны иметь увеличенную ширину и быть хорошо залужены. Для улучшения теплоотвода между радиатором (рис.6) и переключающим транзистором Т1 наносится тонкий слой силиконовой смазки. В опытном образце было использовано герконовое реле с сопротивлением обмотки 1 кОм на рабочее напряжение 12 В (типа MGR04-А3). Естественно, здесь можно использовать и другие реле с подобными параметрами. Правда, вследствие другого расположения выводов, необходимо будет несколько модифицировать печатную плату. Во избежание возможных пробоев выводы обмоток трансформатора изолируются тонкими пластиковыми трубками.





Рис. 6. Конструкция радиатора

   Параметры трансформатора приведены в табл.1. Горшкообразный сердечник привинчивается к плате медным или алюминиевым винтом. Между сердечником и печатной платой помещается резиновая прокладка - крепление сердечника будет упругим, и он не будет трескаться.

Табл. 1

Номер обмотки

Число витков

Диаметр провода, мм

Примечание
n1 17 0,6 Между обмотками n1 и n2 - изоляция из двух слоев трансформаторной бумаги 0,02 мм
n2 4 0,35
n3 140 0,3
   Преобразователь для газоразрядных ламп можно разместить в пластмассовом корпусе. Во избежание подключения преобразователя в неправильной полярности целесообразно установить на конце кабеля питания разъем от "прикуривателя".



Рис. 7. Принципиальная схема преобразователя для газоразрядных ламп 18 Вт

   Настройка прибора очень проста. На собранный преобразователь подается напряжение питания 12 В от блока питания или автомобильного аккумулятора. Замеряется потребляемый ток, и с помощью потенциометра Р1 его величина устанавливается равной 200...220 мА. В этом случае сила света газоразрядной лампы будет довольно значительной. Работа преобразователя была проверена с лампами разных типов; во всех случаях он работал нормально. Необходимо следить, чтобы напряжение аккумулятора находилось в диапазоне 10...14 В; лампа зажигается надежно, и ее световой поток не меняется.



Рис. 8. Последовательность намотоки обмоток трансформатора

   Преобразователь для газоразрядных ламп 18 Вт. Его схема приведена на рис.7, и она полностью такая же, как и схема на рис.1; отличаются только типы и номиналы деталей. Естественно, и принцип действия у них одинаков. Поскольку используется лампа 18 Вт, переключающий транзистор должен быть более мощным; горшкообразный сердечник трансформатора также имеет большие размеры. Последовательность обмоток трансформатора схематически показана на рис.8; число витков обмоток и диаметр провода приведены в табл.2. Увеличение ферритового сердечника привело к необходимости модификации печатной платы. Печатная плата преобразователя для газоразрядных ламп 18 Вт приведена на рис.9, а схема размещения деталей на ней - на рис.10. Нити накала газоразрядной лампы 18 Вт имеют большую площадь, а поэтому для надежного зажигания необходимо больше времени, вследствие чего резистор R4 имеет большее сопротивление.





Рис. 9. Печатная плата преобразователя для газоразрядных ламп 18 Вт

   Преобразователь для ламп 18 Вт настраивается точно так же как и для ламп 6 Вт. Потенциометром Р1 устанавливается ток 1,1...1,3 А. В этом случае частота колебаний преобразователя примерно равна 10 кГц, а лампа имеет значительную светоотдачу. При такой настройке и напряжении питания в диапазоне 10...14 В лампа надежно зажигается, а световой поток практически равномерен. Данный преобразователь был испытан с лампами разных типов и со всеми хорошо работал.



Рис. 10. Схема размещения деталей преобразователя для газоразрядных ламп 18 Вт

Табл. 2

Номер обмотки

Число витков

Диаметр провода, мм

Примечание
n1 12 0,9 Между обмотками n1 и n2 - два слоя изолирующей трансформаторной бумаги 0,02 мм;
между обмотками n2 и n3 - три слоя этой же бумаги
n2 4 0,4
n3 135 0,4
Сердечник: N22 AL600, диаметром 35 мм
Rediotechnika Evkonyve 2000. Перевод А.Бельского.

Дата публикации: 29.08.2003


Интегральные таймеры в автомобильной противоугонной системе


M.L.Harvey
Фирма Ropat Corp. (Эль-Сегандо, шт. Калифорния)

На основе всего двух дешевых интегральных таймеров типа 555 можно собрать недорогую автомобильную противоугонную систему. Ее принципиальная схема приведена на рисунке 1.


Puc.1

Таймер А выполняет двойную функцию - обеспечивает время выдержки (оно примерно равно 1,1 RAСA), достаточное не только для того, чтобы водитель, включив противоугонную систему, успел выйти из машины, но также и для того, чтобы он, сев в машину, успел выключить систему. Благодаря этому времени выдержки исключается необходимость устанавливать вне салона машины специальный выключатель, что всегда неудобно, не говоря уж о том, что злоумышленник всегда может обнаружить этот выключатель. В данном случае тумблер для включения и выключения системы можно спрятать где-нибудь за приборным щитком машины.

Когда система выключается, то спадом выходного импульса таймера Л запускается таймер В. Когда же система включена, то тиристор позволяет запустить таймер В не иначе как от срабатывания одного из датчиков - выключателей заземляющего типа, расположенных в уязвимых точках машины.

В результате этого периоды заряда и разряда одинаковы и зависят только от Rт и RR. Поэтому для рабочей частоты схемы можно написать уравнение


или


1аким образом, изменение частоты в зависимости от температуры согласуется с изменением напряжения в резисторном делителе, состоящем из термистора и резистора (делитель этого типа нередко используют в мостовой схеме, дабы получить линеаризированную зависимость напряжения от температуры). Напряжение на выходе делителя может быть выражено в виде


Поскольку в уравнениях (3) и (2) знаменатели одинаковые, зависимость частоты от температуры в схеме преобразователя будет иметь такой же вид и такую же степень нелинейности, как зависимость напряжения от температуры для обычного делителя напряжения, состоящего из термистора и резистора.

Если используется термистор, обладающий при температуре 25° С сопротивлением Rо=5 кОм и обеспечивающий в температурном интервале


от 0 до 50° С изменение сопротивления в 9, 06 раз, то схема преобразователя дает в интервале температур до 25° С погрешность за счет нелинейности не более ±0,5° С. Эта погрешность отражена на графике зависимости частоты от температуры, приведенном на рисунке.

Тот факт, что значение частоты в герцах во всем рабочем интервале температур хорошо совпадает со значением температуры в градусах Фаренгейта (интервал 3-46° С соответствует интервалу 37-115° F), является чисто случайным. В общем случае частота будет линейно зависеть от температуры в любом ее интервале, но значение частоты будет отличаться от значения температуры.

Чтобы свести к минимуму погрешности преобразователя, возможно, придется использовать высокостабильные поликарбонатные конденсаторы. В схеме, приведенной на рисунке, были использованы конденсаторы общего применения с номинальным допуском ±5%, а чтобы получить точное значение частоты для данной температуры, параллельно им подключали специально подобранные конденсаторы небольшой емкости.

ИС таймера сама по себе вносит в отсчет частоты в зависимости от температуры лишь пренебрежимо малую погрешность. Если не предусмотреть правильную развязку цепей питания, то схема может быть несколько чувствительна к изменениям напряжения питания.


ЭЛЕКТРОННОЕ ЗАЖИГАНИЕ


П.БРЯНЦЕВ
626171, Тюменская обл., Уватский р-н, с.Ивановка.

Предлагаемая схема (рис. 1) предназначена для установки на автомобили с контактной системой зажигания.

Она имеет следующие преимущества:

- мощность искры увеличена:

- контакты прерывателя не обгорают,

- не нужен резистор в цепи катушки зажигания:

- при включенном зажигании, но незаведенном двигателе схема плавно, без искры, отключается.

Мощность искры в данной схеме зависит от температуры VT2, и на горячем двигателе уменьшается, а на холодном — увеличивается, тем самым облегчая запуск.

При замыкании и размыкании контактов прерывателя SKимпульс проходит через С1, кратковременно открывая VT1 и VT2. При закрывании VT2 возникает искра. С2 сглаживает пик импульса напряжения. R6 и R5 ограничивают максимальное напряжение на коллекторе VT2. При достижении нужного напряжения VT2 приоткрывается, ограничивая дальнейший рост напряжения.

Напряжение открывания VT2 зависит от величины Uбэ которая, в свою очередь, зависит от температуры. При разомкнутых контактах прерывателя VT1 и VT2 закрыты. При длительно замкнутых контактах ток через С 1 постепенно убывает, соответственно и VT1 и VT2 плавно закрываются, защищая катушку зажигания от перегрева.

Детали: С1 — типа КМ или К73. R6 обеспечивает стабилизацию выходного напряжения. Его номинал подбирается для конкретной катушки зажигания. На схеме величина R6 указана для катушки Б115. Ее основные параметры: Ri=1.6 Ом, I<8А, Ui<330 В. Коэффициент трансформации К=68. Для катушки Б116 (Ri=0,6 Ом, Ii<20 A, Ui<160 В, К=154) величина R6=11 к. Для этой катушки лучше использовать в качестве VT2 транзисторы КТ898А.

Для повышения надежности схемы лучше использовать составной транзистор VT2, как показано на рис.2.



ЭЛЕКТРОННЫЙ ТАХОМЕТР (для мотоцикла)


С.СЫЧ, 225876, Брестская обл., Кобринскийр-Н, п.Ореховский, ул.Ленина, 17 - 1.

Во многих мотоциклах, мопедах, мотонартах и другой мототехиике отсутствует такой важный прибор как тахометр. Предлагаю простой и надежный тахометр. Он рассчитан на работу с одноцилиндровым двухтактным двигателем внутреннего сгорания с контактной или бесконтактной системой зажигания и позволяет измерять частоту вращения коленчатого вала до 10000 об/мин. Схема тахометра приведена на рис. 1.

В исходном состоянии транзистор VT1 закрыт, а VT2 открыт. В это время левая (по схеме) обкладка конденсатора С 5 соединена через малое сопротивление открытого транзистора VT2 с шиной +5 В. Ток в это время через микроамперметр РА1 не идет. При первом отрицательном полупериоде переменного напряжения, поданного на вход тахометра, транзистор VT1 открывается, а VT2 закрывается. В это время С5 быстро заряжается через микроамперметр РА1, VD3 и R5.


При положительном полупериоде входного напряжения VT1 закрывается, а VT2 открывается. Теперь С5 разряжается через малое сопротивление открытого VT2 и VD4. При следующем отрицательном полупериоде процесс повторяется.

Подстроечным резистором R6 устанавливается верхняя граница частоты измеряемого сигнала. Номинал С5 подбирается в зависимости от типа двигателя. Чем выше частота оборотов двигателя, тем меньше должна быть емкость конденсатора С5. Правильно собранная схема наладки не требует. Следует только подстроечным резистором R6 установить максимальные показания тахометра, открыв дроссельную заслонку двигателя до конца.

Схема подключения тахометра к электрооборудованию мотоцикла показана на рис.2.


Если зажигание контактное, вход тахометра подключается к точке А. Для бесконтактного зажигания - к точке Б.



КАТОДНАЯ ЗАЩИТА ОТ КОРРОЗИИ


Многим автолюбителям известно, что достаточно появиться небольшой царапине - и ржавчина начинает прямо-таки поглощать автомобиль. И бороться с ней весьма трудно. Какие только хитрости ни придумывают автомобилисты - различные покрытия, мастики, антикоры... Да вот беда: чтобы обработать с должным качеством все наиболее поражаемые места, приходится порой разбирать весь автомобиль. Такая операция занимает немало времени, да и требует постоянного контроля. Кроме того, в процессе эксплуатации происходит постепенное разрушение покрытий. Из-за вибраций при движении появляются микротрещины, под ударами камней или песка краска откалывается. Поэтому вполне понятно желание автомобилистов приобрести чудо-прибор: один раз потратился и навсегда защитил кузов от ржавчины.

Метод катодной защиты от коррозии уже давно применяется на самых разнообразных объектах. Например на кораблях устанавливают специальные протекторы, которые, растворяясь в морской вода, обеспечивают защиту корпуса судна. Подземные трубопроводы перед укладкой обрабатывают антикоррозийными составами и обматывают специальной лентой. На определенном расстоянии от трубопровода закапывают анод (электрод) - металлическую болванку, к которой подключают "плюс" источника постоянного тока, а к самой трубе - "минус". Благодаря разности потенциалов между электродом и защищаемым металлом в цепи образующегося электролита (влага, соль и т.п.) проходит ток. На аноде происходит освобождение электронов - реакция окисления, и саморастворение катода прекращается [1, 2].

При катодной поляризации металлу нужно сообщить такой отрицательный потенциал, при котором его окисление становится термодинамически маловероятным.Для железа и его сплавов полная защита от коррозии достигается при потенциале 0,1...0,2 В. Дальнейший сдвиг потенциала мало влияет на степень защиты. Плотность защитного тока должна быть в пределах 10...30 мА/м2.

Кроме того, со временем на металле за счет концентрационной поляризации по кислороду наблюдается дополнительное смещение потенциала в отрицательную сторону, что позволяет периодически выключать устройство (при ремонте автомобиля, зарядке аккумулятора и т.п.)[3].


Устройство защиты от коррозии состоит из электронного блока и защитных электродов. На корпусе электронного блока размещают световую индикацию работы устройства.

Устройство позволяет поддерживать значение потенциала влажных участков поверхности кузова на уровне,необходимом для полной остановки и прекращения коррозийных процессов за счет разрушения защитных электродов.

В качестве защитных электродов (анодов) могут использоваться как разрушающиеся материалы (нержавеющая сталь, алюминий), требующие замены через 4...5 лет, так и неразрушающиеся. В качестве неразрушающихся электродов можно применять карбоксил, магнетит, графит или платину. Защитные электроды выполняются в виде прямоугольных либо круглых пластин площадью 4...9 см2.



На рисунке приведена схема простого антикоррозийного устройства, которое может успешно справляться с явлениями коррозии. Конечно, в простейшем виде устройство катодной защиты может состоять из защитных электродов и проводов, подключаемых непосредственно на "плюсовую" клемму аккумулятора. Однако здесь трудно контролировать возможное короткое замыкание электродов с кузовом автомобиля и его работу в целом. Для этого в устройстве в цепь делителя напряжения R1, R2, R3 включен светодиод VD1, который в рабочем режиме светится ровным светом, потребляя незначительный ток от аккумулятора (около 2 мА).

Если вдруг один из защитных электродов замыкается на кузов автомобиля, светодиод VD1 прекращает светиться. В этом случае необходимо найти-и устранить замыкание. При повышенной влажности кузова светодиод VD1 может в небольших пределах изменять свое свечение, что указывает на работу катодной защиты. Кроме того, данное устройство имеет высокую надежность, поскольку дает при коротком замыкании выхода с кузовом ток перегрузки не более 25...30мА.

При установке и монтаже устройства следует помнить, что:

- один защитный электрод защищает площадь с радиусом около 0,25...0,35 м;
- защитные электроды устанавливаются только на места, защищенные лакокрасочным покрытием;


- использовать можно только эпоксидный клей или шпатлевку на его основе;
- наружную сторону защитных электродов (где нет пайки) нельзя покрывать мастикой, краской, клеем или другим электроизоляционным покрытием.

Электронный блок устанавливается в любом месте автомобиля и присоединяется к общей схеме электрооборудования автомобиля. При этом необходимо, чтобы электронный блок оставался включенным даже при отключенном общем электрооборудовании автомобиля.

В целом устройство потребляет не больше чем часы автомобиля и гарантирует длительную эффективную работу даже при сильно разряженном аккумуляторе.

Литература

1. Красноярский В.В., Зобов Е.В. Электрохимическая защита сооружений и оборудования от коррозии. -1981.
2. Люблинский Е.Я. Электрохимическая защита от коррозии. -1987.
3. Тершин В., Бондаренко А. Ток защищает от коррозии // За рулем.-1993.-N 12. -С.23.

П.БЕЛЯЦКИЙ, 633190, Новосибирская обл., г.Бердск-9, а/я 833.


Прибор для контроля уровня воды в радиаторе


Радиатор автомобиля должен содержать достаточное количество воды. Если водитель своевременно не заметит значительного уменьшения воды в радиаторе, то мотор перегреется.

Прибор для контроля уровня воды в радиаторе (см. схему), имеет то преимущество, перед аналогичными устройствами, что при его использовании не возникает электролиза, приводящего к постепенному разрушению стенок радиатора. Применение кремниевых транзисторов делает прибор мало чувствительным к значительным перепадам температуры.


Основа прибора - мультивибратор с одним устойчивым состоянием на транзисторах Т2 и Т3. Его нагрузкой служит сигнальная лампа Л7. Транзистор Т4 способствует более четкой фиксации рабочего состояния (открыт - закрыт) транзистора Т2.

Когда щуп в радиаторе погружен в воду, на базу транзистора Т1 поступает напряжение смещения и он открыт. При этом база и эмиттер транзистора Т2 имеют одинаковый потенциал и этот транзистор будет закрыт. В результате мультивибратор не работает, а сигнальная лампа Л1 обесточена. Диод Д1 защищает базу транзистора T2 от перенапряжений.

При понижении уровня воды в радиаторе, щуп оказывается в воздухе. В результате этого транзистор Т1 закрывается, а Т2 открывается. Теперь мультивибратор будет работать с частотой, определяемой постоянной времени цепочки R4 С1 (около 2 гц). Сигнальная лампа Л1 будет вспыхивать с той же частотой, привлекая внимание водителя.

Конденсатор С1 должен быть бумажным, так как при работе полярность заряда на нем изменяется на обратную. Щуп изготовляют из нержавеющей стали, а пробку для щупа из пластмассы с высокой температурой плавления. Для этих целей можно применить нейлон, фторопласт или лавсан.

В устройстве следует применять только кремниевые транзисторы и диоды. Например, транзисторы Т1, Т2 можно взять типа МП116, T3 - КТ602 и Т4 - КТ315 с любым буквенным индексом. Диод типа Д103 или Д106 с любым буквенным индексом.

"Funk Technik", 1970, № 12.



Противоугонное устройство, имитирующее неисправность двигателя


Похитители автомобилей становятся на редкость изобретательными в поиске и повреждении противоугонных устройств. А что если двигатель периодически запускается и глохнет? Если автомобиль оснащен аппаратурой, имитирующей неисправность двигателя, потенциальный похититель скорее всего не заподозрит действие противоугонного устройства и займется поисками новой жертвы.

Новое устройство обеспечивает нормальный запуск двигателя, а спустя 12 с размыкает цепь катушки зажигания, в результате чего двигатель глохнет. Через 4 с цепь вновь замыкается, позволяя похитителю возобновить запуск двигателя. Цикл повторяется, и еще через 12 с двигатель глохнет и не запускается. К этому времени похититель, возможно, отъедет на небольшое расстояние от места стоянки.

Похититель может тронуться с места в автомобиле, оборудованном данной схемой, однако он вскоре откажется от своих намерений после неоднократной оста новки двигателя. ИС таймера периодически отключает напряжение от катушки зажигания, имитируя неисправность двигателя.
В схеме противоугонного устройства, приведенной на рис. 1, используется ИС таймеры 555 и К/МОП ИС, потребляющие малый ток. Покидая автомобиль, водитель приводит в действие устройство замаскированным выключателем Si. Некурящие водители могут хорошо за- маскировать переключатель Si в зажигалке, провод которой отключается от аккумулятора и соединяется со схемой в точке А. Для дополнительной защиты можно выключатель зажигания соединить последовательно с выключателем Si.

После того как схема установлена в рабочее состояние выключателем Si, при включении зажигания запускается триггер 1, собранный на двух вентилях НЕ-И, в результате импульсы 0,5 Гц с выхода таймера 555 поступают к сдвигающему регистру CD 4015. ИС CD 4015 содержит два четырехразрядных регистра, которые в данном случае соединены последовательно. Спустя 12 с (шесть импульсов) вентили НЕ-И открывают транзистор Q2, который размыкает нормально закрытые контакты реле и тем самым глушит двигатель. После того как в сдвигающий регистр поступят еще два импульса таймера, вентили НЕ-И закрывают транзистор Q2, разрешая повторный пуск двигателя.


Цикл возобновляется, но когда зажигание включается в третий раз, включается триггер 2 и запуск двигателя блокируется, пока не вернется водитель, который разомкнет выключатель Si. Временные диаграммы детально показаны на рис. 2.



Старт-стопные периоды противоугонной схемы составляют соответственно 12 и 4 с. После того как двигатель заглохнет в третий раз, он не может быть запущен, пока водитель не разомкнет выключатель Si, замаскированный в салоне автомобиля.

Чтобы сделать устройство непохожим на противоугонное средство, его можно собрать на небольшой плате и разместить в корпусе, напоминающем прибор для контроля загрязнения окружающей среды.
Подключив выводы 5 и 12 сдвигающего регистра к дополнительному двухвходовому вентилю НЕ-И, можно получить сигнал тревоги через 60 с. Вентиль может управлять реле, включающим звуковой сигнал, фары или сирену, если необходимо привлечь внимание к похищаемому автомобилю.

Аналоги микросхем:
555 - КР1006ВИ1
CD4011 - 561ЛА7
CD4015 - 561ИР2


Схема десульфатирующего зарядного устройства


Схема десульфатирующего зарядного устройства предложена Самунджи и Л. Симеоновым. Зарядное устройство выполнено но схеме одпополупериодного выпрямителя на диоде VI с параметрической стабилизацией напряжения (V2) и усилителем тока (V3, V4). Сигнальная лампочка Н1 горит при включенном в сеть трансформаторе. Средний зарядный ток около 1,8 А регулируется подбором резистора R3. Разрядный ток задается резистором R1. Напряжение на вторичной обмотке трансформатора равно 21 В (амплитудное значение 28 В). Напряжение на аккумуляторе при номинальном зарядном токе равно 14 В. Поэтому зарядный ток аккумулятора возникает лишь тогда, когда амплитуда выходного напряжения усилителя тока превысит напряжение аккумулятора. За время одного периода переменного напряжения формируется один импульс зарядного то-ка в течение времени Тi. Разряд аккумулятора происходит в течение времени Тз= 2Тi. Поэтому амперметр показывает среднее значение зарядного тока, равное примерно одной трети от амплитудного значения суммарного зарядного и разрядного токов.


В зарядном ycтройстве можно использовать трансформатор ТС-200 от телевизора. Вторичные обмотки с обеих катушек трансформатора снимают и проводом ПЭВ-2 1,5 мм наматывают новую обмотку, состоящую из 74 витков (по 37 витков на каждой катушке). Транзистор V4 устанавливают на радиатор с эффективной площадью поверхности около 200 см кв.

Детали:

Диоды VI типа Д242А. Д243А, Д245А. Д305, V2 один или два включенных последовательно стабилитрона Д814А, V5 типа Д226: транзисторы V3 типа КТ803А, V4 типа КТ803А или КТ808А.

При настройке зарядного устройства следует подобрать напряжение на базе транзистора V3. Это напряжение снимается с движка потенциометра (470 Ом), подключенного параллельно стабилитрону V2. В этом случае резистор R2 выбирают с сопротивлением около 500 Ом. Перемещением движка потенциометра добиваются, чтобы среднее значение зарядного тока разнялось 1,8 А.



Сигнализатор оледенения


Е. Summer. Ice warning indicator monitors road conditions.

Более 10 лет автомобили фирмы Rover оснащаются сигнализатором, предупреждающим водителя о возможной гололедице. С появлением универсальных и экономичных счетверенных блоков операционных усилителей такое устройство можно устанавливать на автомобиле любой модели.

Сигнализатор оледенения, показанный на схеме, контролируя температуру окружающего воздуха, предупреждает водителя о наступлении условий для образования льда на дороге: в сырую погоду при температуре от 0 до 2,2° С. Устройство имеет прочную конструкцию и обеспечивает хорошую помехозащиту.

Схема управляет длительностью периода появления вспышек светоизлучающего диода. При температуре 2,2° С схема генерирует непродолжительные периоды вспышек. При понижении температуры до 0° С вспышки светоизлучающего диода следуют непрерывно. Вспышки повторяются примерно раз в секунду.


В качестве датчика температуры используется термистор, номинальное сопротивление которого при 25° С составляет 15 кОм. Термистор установлен в ограждении и находится в контакте с окружающим воздухом. Ограждение предупреждает появление ошибок, обусловленных движением воздуха.

В схеме использованы три из четырех операционных усилителей блока. Так как работа схемы зависит от соотношения токов, схема нечувствительна к изменениям напряжения батареи, что позволяет обойтись без стабилизации напряжения.

Усилитель А1 сравнивает сопротивление термистора с включенными последовательно резисторами R1 и R2. Резистор R3 в цепи обратной связи служит для установки соответствующей крутизны выходного напряжения усилителя, в зависимости от температуры. При температуре 0° С напряжение на выходе усилителя равно 0,6 Vбат, а при температуре 2,2° С оно составляет 0,3 Vбат.

Усилитель A2 включен по схеме мультивибратора, частота повторения примерно один импульс в секунду. Резисторы R4, R5 и R6 служат для установки верхнего и нижнего пределов напряжения на конденсаторе C1 при 0,6 Vбат и 0,3 Vбат соответственно.

Выходные напряжения усилителей A1 и А2. сравниваются на усилителе A3. Когда выходное напряжение мультивибратора (A2) меньше выходного напряжения усилителя Ль напряжение на выходе усилителя A3 положительно и светоизлучающий диод зажигается. Резистор R7 ограничивает ток через светоизлучающий диод приблизительно до 25 мА.

Для калибровки схемы служит резистор R2. При погруженном в лед термисторе величина R2 устанавливается такой, чтобы светоизлучающий диод был постоянно включен. Другие рабочие точки можно получить регулировкой резисторов R1, R2, R3.



Устройство для контроля систем зажигания


Работоспособность самодельных либо промышленных конденсаторных (тиристорных) систем зажигания целесообразно проверять перед установкой на автомобиль. Схема устройства для контроля таких систем зажигания, разработанная Л. Кузьминым, указана на рисунке. Устройство содержит симметричный мультивибратор, выполненный на транзисторах V2 и V4. и электронный ключ на транзисторе V5. С помощью описанного устройства имитируется работа распределителя зажигания, который для четырехцилиндрового двигателя при скорости вращения коленчатого вала 6000 об/мин осуществляет прерывание тока в первичной обмотке катушки зажигания с частотой 200 Гц. Поэтому при указанных на схеме номиналах элементов мультивибратора частота генерации приблизительно равна 200 Гц. Эту частоту можно понизить до 100 Гц путем подключения с помощью переключателя S1 дополнительных конденсаторов С2 и С4. С помощью электронного ключа Лимитируется работа контактов прерывателя. Коллектор транзистора V5 подключается к цепи запуска тиристора в системе зажигания. В качестве искро


вого разрядника удобно применить стандартную свечу зажигания. На открытом воздухе в свече сохраняются условия искро-образования такие же, как в двигателе, если зазор между электродами свечи увеличить примерно в два раза. Поэтому перед проверкой электронной системы зажигания зазор между электродами свечи следует увеличить примерно до 1,2 мм. Подключение устройства к испытуемой системе зажигания и к источнику питания (аккумуляторной батарее) производят с помощью пяти зажимов. Работоспособность испытуемой системы зажигания контролируют по наличию искры в зазоре разрядника F1, ее интенсивности, форме и величине тока, протекающего через искровой разрядник. Величину и форму тока необходимо контролировать с помощью осциллографа (Cl-19, Cl-49, C1-83 и др.). Амплитудное значение тока цепи разряда определяют на основании измеренного значения амплитуды напряжения на резисторе, который включают между разрядником F1 и шиной питания - 12 В, и учета сопротивления резистора (100...300 Ом). Амплитудное значение тока разряда может достигать величины 80 мА. Ток в цепи разряда существует в течение времени действия искры, которое должно достигать величины 300...500 мкс. При меньшем времени действия искры затрудняется пуск холодного двигателя, снижается полнота сгорания топлива, что приводит к уменьшению мощности двигателя и увеличению токсичности отработанных газов.

С увеличением времени действия искры до 1,2...1,5 мс существенно снижаются требования к точности установки требуемого угла опережения зажигания (с 1...2 до 3...50), однако при этом из-за электроэрозии электродов свечей зажигания снижается их долговечность.

При работе с устройством для контроля электронных систем зажигания необходимо помнить, что па высоковольтном выводе катушки зажигания напряжение может достигать 20 кВ. Поэтому конструкция устройства должна обеспечивать безопасность работающего с прибором. Описанный прибор пригоден и для проверки электронных систем зажигания с питанием от источника напряжением 6 В.



ЗАРЯДКА АККУМУЛЯТОРОВ АСИММЕТРИЧНЫМ ТОКОМ


Значительно лучших эксплуатационных характеристик аккумуляторов можно добиться, если их зарядку производить асимметричным томом. Схема устройства зарядки, реализующая такой принцип, показана на рисунке.


При положительном полупериоде входного переменного напряжения ток протекает через элементы VD1, R1 и стабилизируется диодом VD2. Часть стабилизированного напряжения через переменный резистор R3 подается на базу транзистора VT2. Транзисторы VT2 и VT4 нижнего плеча устройства работают как генератор тока, величина которого зависит от сопротивления резистора R4 и напряжения на базе VT2. Зарядный ток в цепи аккумулятора протекает по элементам VD3, SA1.1, РА1, SA1.2, аккумулятор, коллекторный перепад транзистора VT4, R4.

При отрицательном полупериоде переменного напряжения на диоде VD1 рабо-та устройства аналогична, но работает верхнее плечо - VD1 стабилизирует отрицательное напряжение, которое регулирует протекающий по аккумулятору ток в обратном напряжении (ток разрядки).

Показанный на схеме миллиамперметр РА1 используется при первоначальной настройке, в дальнейшем его можно отключить, переведя переключатель в другое положение.

Такое зарядное устройство обладает следующими преимуществами: 1. Зарядный и разрядный токи можно регулировать независимо друг от друга. Следова-тельно, в данном устройстве возможно применять аккумуляторы с различной величиной энергоемкости. 2. При каких-либо пропаданиях переменного напряжения каждое из плеч закрывается и через аккумулятор ток не протекает, что защищает аккумулятор от самопроизвольной разрядки.

В данном устройстве из отечественных элементов можно применить в качестве VD1 и VD2 - KC133A, VT1 и VT2 - КТ315Б или КТ503Б. Остальные элементы выбираются в зависимости от зарядного тока. Если он не превышает 100 мА, то в качестве транзисторов VT3 и VT4 следует применить КГ815 или КТ807 с любыми буквенными индексами (расположить на теплоотводе с площадью теплорассеиваюшей поверхности 5...15 кв.см), а в качестве диодов VD3 и VD4 - Д226, КД105 тоже с любыми буквенными индексами.